⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vmsqllite3.cpp

📁 TOOL (Tiny Object Oriented Language) is an easily-embedded, object-oriented, C++-like-language inter
💻 CPP
📖 第 1 页 / 共 4 页
字号:
  m_iTimeoutValue = 60000; // 60 seconds
}


VMSqlite3xDatabase::VMSqlite3xDatabase( const VMSqlite3xDatabase& roOther )
{
  m_poDb3Instance = roOther.m_poDb3Instance;
  m_iTimeoutValue = 60000; // 60 seconds
}


VMSqlite3xDatabase::~VMSqlite3xDatabase( void )
{
  Close();
}


VMSqlite3xDatabase& VMSqlite3xDatabase::operator=( const VMSqlite3xDatabase& roOther )
{
  m_poDb3Instance = roOther.m_poDb3Instance;
  m_iTimeoutValue = 60000; // 60 seconds
  return( *this );
}


void VMSqlite3xDatabase::Open( const char* pchDbFileName )
{
  int iResult = sqlite3_open( pchDbFileName, &m_poDb3Instance );

  if ( iResult != SQLITE_OK )
  {
    const char* pchError = sqlite3_errmsg( m_poDb3Instance );
		throw VMSqlite3xException( iResult, (char*)pchError, DONT_DELETE_MSG );
  }

  SetTimeout( m_iTimeoutValue );
}


void VMSqlite3xDatabase::Close( void )
{
  if ( m_poDb3Instance )
  {
    sqlite3_close( m_poDb3Instance );
    m_poDb3Instance = 0;
  }
}


VMSqlite3xStatement VMSqlite3xDatabase::PrepareStatement( const char* pchSqlToCompile )
{
  CheckDatabase();

  sqlite3_stmt* poVM = CompileStatement( pchSqlToCompile );

  return( VMSqlite3xStatement( m_poDb3Instance, poVM ) );
}


bool VMSqlite3xDatabase::DoesTableExist( const char* pchTableName )
{
  char achSQL[ 128 ];

  sprintf( achSQL,
           "select count(*) from sqlite_master where type='table' and name='%s'",
           pchTableName );

  int iResult = ExecuteScalar( achSQL );
  return( iResult > 0 );
}


int VMSqlite3xDatabase::ExecuteDML( const char* pchSqlToExec )
{
  CheckDatabase();

  char* pchError = 0;

  int iResult = sqlite3_exec( m_poDb3Instance, pchSqlToExec, 0, 0, &pchError );

  if ( iResult == SQLITE_OK )
  {
    return( sqlite3_changes( m_poDb3Instance ) );
  }
  else
  {
    throw VMSqlite3xException( iResult, pchError );
  }
}


VMSqlite3xQuery VMSqlite3xDatabase::ExecuteQuery( const char* pchSqlToExec )
{
  CheckDatabase();

  sqlite3_stmt* poVM = CompileStatement( pchSqlToExec );

  int iResult = sqlite3_step( poVM );

  if ( iResult == SQLITE_DONE )
  {
    // no rows
    //
		return( VMSqlite3xQuery( m_poDb3Instance, poVM, true ) );
  }
  else 
  if ( iResult == SQLITE_ROW )
	{
    // at least 1 row
    //
    return( VMSqlite3xQuery( m_poDb3Instance, poVM, false ) );
  }
  else
  {
    iResult = sqlite3_finalize( poVM );
    const char* pchError= sqlite3_errmsg( m_poDb3Instance );
		throw VMSqlite3xException( iResult , (char*)pchError, DONT_DELETE_MSG );
	}
}


int VMSqlite3xDatabase::ExecuteScalar( const char* pchSqlToExec )
{
  VMSqlite3xQuery oQuery = ExecuteQuery( pchSqlToExec );

  if ( oQuery.IsEOF() || oQuery.GetColumnCount() < 1 )
  {
    throw VMSqlite3xException( CPPSQLITE_ERROR,
                               "Invalid scalar query",
                               DONT_DELETE_MSG );
  }

  return( atoi( oQuery.GetColumnBufferAtIndex( 0 ) ) );
}


VMSqlite3xTable VMSqlite3xDatabase::GetTableByName( const char* pchSelectQuery )
{
  CheckDatabase();

  char*  pchError    = 0;
  char** ppchResults = 0;
  int    iResult;
  int    iRowCount( 0 );
  int    iColCount( 0 );

  iResult = sqlite3_get_table( m_poDb3Instance, pchSelectQuery, &ppchResults, &iRowCount, &iColCount, &pchError );

  if ( iResult == SQLITE_OK )
  {
    return VMSqlite3xTable( ppchResults, iRowCount, iColCount ); 
  }
  else
  {
    throw VMSqlite3xException( iResult, pchError );
  }
}


sqlite_int64 VMSqlite3xDatabase::GetRowIdForLastInsert( void )
{
  return( sqlite3_last_insert_rowid( m_poDb3Instance ) );
}


void VMSqlite3xDatabase::SetTimeout( int iMilliSecs )
{
  m_iTimeoutValue = iMilliSecs;

  sqlite3_busy_timeout( m_poDb3Instance, m_iTimeoutValue );
}


void VMSqlite3xDatabase::CheckDatabase( void )
{
  if ( !m_poDb3Instance )
  {
    throw VMSqlite3xException( CPPSQLITE_ERROR,
                               "Database not open",
                               DONT_DELETE_MSG );
  }
}


sqlite3_stmt* VMSqlite3xDatabase::CompileStatement( const char* pchSqlToCompile )
{
  CheckDatabase();

  char*         pchError = 0;
  const char*   pchTail  = 0;
  sqlite3_stmt* poVM;

  int iResult = sqlite3_prepare( m_poDb3Instance, pchSqlToCompile, -1, &poVM, &pchTail );

  if ( iResult != SQLITE_OK )
  {
    throw VMSqlite3xException( iResult, pchError );
  }

  return( poVM );
}


////////////////////////////////////////////////////////////////////////////////
// SQLite encode.c reproduced here, containing implementation notes and source
// for sqlite3_encode_binary() and sqlite3_decode_binary() 
////////////////////////////////////////////////////////////////////////////////

/*
** 2002 April 25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains helper routines used to translate binary data into
** a null-terminated string (suitable for use in SQLite) and back again.
** These are convenience routines for use by people who want to store binary
** data in an SQLite database.  The code in this file is not used by any other
** part of the SQLite library.
**
** $Id: encode.c,v 1.10 2004/01/14 21:59:23 drh Exp $
*/

/*
** How This Encoder Works
**
** The output is allowed to contain any character except 0x27 (') and
** 0x00.  This is accomplished by using an escape character to encode
** 0x27 and 0x00 as a two-byte sequence.  The escape character is always
** 0x01.  An 0x00 is encoded as the two byte sequence 0x01 0x01.  The
** 0x27 character is encoded as the two byte sequence 0x01 0x03.  Finally,
** the escape character itself is encoded as the two-character sequence
** 0x01 0x02.
**
** To summarize, the encoder works by using an escape sequences as follows:
**
**       0x00  ->  0x01 0x01
**       0x01  ->  0x01 0x02
**       0x27  ->  0x01 0x03
**
** If that were all the encoder did, it would work, but in certain cases
** it could double the size of the encoded string.  For example, to
** encode a string of 100 0x27 characters would require 100 instances of
** the 0x01 0x03 escape sequence resulting in a 200-character output.
** We would prefer to keep the size of the encoded string smaller than
** this.
**
** To minimize the encoding size, we first add a fixed offset value to each 
** byte in the sequence.  The addition is modulo 256.  (That is to say, if
** the sum of the original character value and the offset exceeds 256, then
** the higher order bits are truncated.)  The offset is chosen to minimize
** the number of characters in the string that need to be escaped.  For
** example, in the case above where the string was composed of 100 0x27
** characters, the offset might be 0x01.  Each of the 0x27 characters would
** then be converted into an 0x28 character which would not need to be
** escaped at all and so the 100 character input string would be converted
** into just 100 characters of output.  Actually 101 characters of output - 
** we have to record the offset used as the first byte in the sequence so
** that the string can be decoded.  Since the offset value is stored as
** part of the output string and the output string is not allowed to contain
** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
**
** Here, then, are the encoding steps:
**
**     (1)   Choose an offset value and make it the first character of
**           output.
**
**     (2)   Copy each input character into the output buffer, one by
**           one, adding the offset value as you copy.
**
**     (3)   If the value of an input character plus offset is 0x00, replace
**           that one character by the two-character sequence 0x01 0x01.
**           If the sum is 0x01, replace it with 0x01 0x02.  If the sum
**           is 0x27, replace it with 0x01 0x03.
**
**     (4)   Put a 0x00 terminator at the end of the output.
**
** Decoding is obvious:
**
**     (5)   Copy encoded characters except the first into the decode 
**           buffer.  Set the first encoded character aside for use as
**           the offset in step 7 below.
**
**     (6)   Convert each 0x01 0x01 sequence into a single character 0x00.
**           Convert 0x01 0x02 into 0x01.  Convert 0x01 0x03 into 0x27.
**
**     (7)   Subtract the offset value that was the first character of
**           the encoded buffer from all characters in the output buffer.
**
** The only tricky part is step (1) - how to compute an offset value to
** minimize the size of the output buffer.  This is accomplished by testing
** all offset values and picking the one that results in the fewest number
** of escapes.  To do that, we first scan the entire input and count the
** number of occurances of each character value in the input.  Suppose
** the number of 0x00 characters is N(0), the number of occurances of 0x01
** is N(1), and so forth up to the number of occurances of 0xff is N(255).
** An offset of 0 is not allowed so we don't have to test it.  The number
** of escapes required for an offset of 1 is N(1)+N(2)+N(40).  The number
** of escapes required for an offset of 2 is N(2)+N(3)+N(41).  And so forth.
** In this way we find the offset that gives the minimum number of escapes,
** and thus minimizes the length of the output string.
*/

/*
** Encode a binary buffer "in" of size n bytes so that it contains
** no instances of characters '\'' or '\000'.  The output is 
** null-terminated and can be used as a string value in an INSERT
** or UPDATE statement.  Use sqlite3_decode_binary() to convert the
** string back into its original binary.
**
** The result is written into a preallocated output buffer "out".
** "out" must be able to hold at least 2 +(257*n)/254 bytes.
** In other words, the output will be expanded by as much as 3
** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
**
** The return value is the number of characters in the encoded
** string, excluding the "\000" terminator.
*/
int sqlite3_encode_binary(const unsigned char *in, int n, unsigned char *out){
  int i, j, e, m;
  int cnt[256];
  if( n<=0 ){
    out[0] = 'x';
    out[1] = 0;
    return 1;
  }
  memset(cnt, 0, sizeof(cnt));
  for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
  m = n;
  for(i=1; i<256; i++){
    int sum;
    if( i=='\'' ) continue;
    sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
    if( sum<m ){
      m = sum;
      e = i;
      if( m==0 ) break;
    }
  }
  out[0] = e;
  j = 1;
  for(i=0; i<n; i++){
    int c = (in[i] - e)&0xff;
    if( c==0 ){
      out[j++] = 1;
      out[j++] = 1;
    }else if( c==1 ){
      out[j++] = 1;
      out[j++] = 2;
    }else if( c=='\'' ){
      out[j++] = 1;
      out[j++] = 3;
    }else{
      out[j++] = c;
    }
  }
  out[j] = 0;
  return j;
}

/*
** Decode the string "in" into binary data and write it into "out".
** This routine reverses the encoding created by sqlite3_encode_binary().
** The output will always be a few bytes less than the input.  The number
** of bytes of output is returned.  If the input is not a well-formed
** encoding, -1 is returned.
**
** The "in" and "out" parameters may point to the same buffer in order
** to decode a string in place.
*/
int sqlite3_decode_binary(const unsigned char *in, unsigned char *out){
  int i, c, e;
  e = *(in++);
  i = 0;
  while( (c = *(in++))!=0 ){
    if( c==1 ){
      c = *(in++);
      if( c==1 ){
        c = 0;
      }else if( c==2 ){
        c = 1;
      }else if( c==3 ){
        c = '\'';
      }else{
        return -1;
      }
    }
    out[i++] = (c + e)&0xff;
  }
  return i;
}


/*****************************************************************************/
/* Check-in history */
/*
 *$Log:  $
*/
/*****************************************************************************/


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -