📄 vmsqllite3.cpp
字号:
m_iTimeoutValue = 60000; // 60 seconds
}
VMSqlite3xDatabase::VMSqlite3xDatabase( const VMSqlite3xDatabase& roOther )
{
m_poDb3Instance = roOther.m_poDb3Instance;
m_iTimeoutValue = 60000; // 60 seconds
}
VMSqlite3xDatabase::~VMSqlite3xDatabase( void )
{
Close();
}
VMSqlite3xDatabase& VMSqlite3xDatabase::operator=( const VMSqlite3xDatabase& roOther )
{
m_poDb3Instance = roOther.m_poDb3Instance;
m_iTimeoutValue = 60000; // 60 seconds
return( *this );
}
void VMSqlite3xDatabase::Open( const char* pchDbFileName )
{
int iResult = sqlite3_open( pchDbFileName, &m_poDb3Instance );
if ( iResult != SQLITE_OK )
{
const char* pchError = sqlite3_errmsg( m_poDb3Instance );
throw VMSqlite3xException( iResult, (char*)pchError, DONT_DELETE_MSG );
}
SetTimeout( m_iTimeoutValue );
}
void VMSqlite3xDatabase::Close( void )
{
if ( m_poDb3Instance )
{
sqlite3_close( m_poDb3Instance );
m_poDb3Instance = 0;
}
}
VMSqlite3xStatement VMSqlite3xDatabase::PrepareStatement( const char* pchSqlToCompile )
{
CheckDatabase();
sqlite3_stmt* poVM = CompileStatement( pchSqlToCompile );
return( VMSqlite3xStatement( m_poDb3Instance, poVM ) );
}
bool VMSqlite3xDatabase::DoesTableExist( const char* pchTableName )
{
char achSQL[ 128 ];
sprintf( achSQL,
"select count(*) from sqlite_master where type='table' and name='%s'",
pchTableName );
int iResult = ExecuteScalar( achSQL );
return( iResult > 0 );
}
int VMSqlite3xDatabase::ExecuteDML( const char* pchSqlToExec )
{
CheckDatabase();
char* pchError = 0;
int iResult = sqlite3_exec( m_poDb3Instance, pchSqlToExec, 0, 0, &pchError );
if ( iResult == SQLITE_OK )
{
return( sqlite3_changes( m_poDb3Instance ) );
}
else
{
throw VMSqlite3xException( iResult, pchError );
}
}
VMSqlite3xQuery VMSqlite3xDatabase::ExecuteQuery( const char* pchSqlToExec )
{
CheckDatabase();
sqlite3_stmt* poVM = CompileStatement( pchSqlToExec );
int iResult = sqlite3_step( poVM );
if ( iResult == SQLITE_DONE )
{
// no rows
//
return( VMSqlite3xQuery( m_poDb3Instance, poVM, true ) );
}
else
if ( iResult == SQLITE_ROW )
{
// at least 1 row
//
return( VMSqlite3xQuery( m_poDb3Instance, poVM, false ) );
}
else
{
iResult = sqlite3_finalize( poVM );
const char* pchError= sqlite3_errmsg( m_poDb3Instance );
throw VMSqlite3xException( iResult , (char*)pchError, DONT_DELETE_MSG );
}
}
int VMSqlite3xDatabase::ExecuteScalar( const char* pchSqlToExec )
{
VMSqlite3xQuery oQuery = ExecuteQuery( pchSqlToExec );
if ( oQuery.IsEOF() || oQuery.GetColumnCount() < 1 )
{
throw VMSqlite3xException( CPPSQLITE_ERROR,
"Invalid scalar query",
DONT_DELETE_MSG );
}
return( atoi( oQuery.GetColumnBufferAtIndex( 0 ) ) );
}
VMSqlite3xTable VMSqlite3xDatabase::GetTableByName( const char* pchSelectQuery )
{
CheckDatabase();
char* pchError = 0;
char** ppchResults = 0;
int iResult;
int iRowCount( 0 );
int iColCount( 0 );
iResult = sqlite3_get_table( m_poDb3Instance, pchSelectQuery, &ppchResults, &iRowCount, &iColCount, &pchError );
if ( iResult == SQLITE_OK )
{
return VMSqlite3xTable( ppchResults, iRowCount, iColCount );
}
else
{
throw VMSqlite3xException( iResult, pchError );
}
}
sqlite_int64 VMSqlite3xDatabase::GetRowIdForLastInsert( void )
{
return( sqlite3_last_insert_rowid( m_poDb3Instance ) );
}
void VMSqlite3xDatabase::SetTimeout( int iMilliSecs )
{
m_iTimeoutValue = iMilliSecs;
sqlite3_busy_timeout( m_poDb3Instance, m_iTimeoutValue );
}
void VMSqlite3xDatabase::CheckDatabase( void )
{
if ( !m_poDb3Instance )
{
throw VMSqlite3xException( CPPSQLITE_ERROR,
"Database not open",
DONT_DELETE_MSG );
}
}
sqlite3_stmt* VMSqlite3xDatabase::CompileStatement( const char* pchSqlToCompile )
{
CheckDatabase();
char* pchError = 0;
const char* pchTail = 0;
sqlite3_stmt* poVM;
int iResult = sqlite3_prepare( m_poDb3Instance, pchSqlToCompile, -1, &poVM, &pchTail );
if ( iResult != SQLITE_OK )
{
throw VMSqlite3xException( iResult, pchError );
}
return( poVM );
}
////////////////////////////////////////////////////////////////////////////////
// SQLite encode.c reproduced here, containing implementation notes and source
// for sqlite3_encode_binary() and sqlite3_decode_binary()
////////////////////////////////////////////////////////////////////////////////
/*
** 2002 April 25
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains helper routines used to translate binary data into
** a null-terminated string (suitable for use in SQLite) and back again.
** These are convenience routines for use by people who want to store binary
** data in an SQLite database. The code in this file is not used by any other
** part of the SQLite library.
**
** $Id: encode.c,v 1.10 2004/01/14 21:59:23 drh Exp $
*/
/*
** How This Encoder Works
**
** The output is allowed to contain any character except 0x27 (') and
** 0x00. This is accomplished by using an escape character to encode
** 0x27 and 0x00 as a two-byte sequence. The escape character is always
** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
** 0x27 character is encoded as the two byte sequence 0x01 0x03. Finally,
** the escape character itself is encoded as the two-character sequence
** 0x01 0x02.
**
** To summarize, the encoder works by using an escape sequences as follows:
**
** 0x00 -> 0x01 0x01
** 0x01 -> 0x01 0x02
** 0x27 -> 0x01 0x03
**
** If that were all the encoder did, it would work, but in certain cases
** it could double the size of the encoded string. For example, to
** encode a string of 100 0x27 characters would require 100 instances of
** the 0x01 0x03 escape sequence resulting in a 200-character output.
** We would prefer to keep the size of the encoded string smaller than
** this.
**
** To minimize the encoding size, we first add a fixed offset value to each
** byte in the sequence. The addition is modulo 256. (That is to say, if
** the sum of the original character value and the offset exceeds 256, then
** the higher order bits are truncated.) The offset is chosen to minimize
** the number of characters in the string that need to be escaped. For
** example, in the case above where the string was composed of 100 0x27
** characters, the offset might be 0x01. Each of the 0x27 characters would
** then be converted into an 0x28 character which would not need to be
** escaped at all and so the 100 character input string would be converted
** into just 100 characters of output. Actually 101 characters of output -
** we have to record the offset used as the first byte in the sequence so
** that the string can be decoded. Since the offset value is stored as
** part of the output string and the output string is not allowed to contain
** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
**
** Here, then, are the encoding steps:
**
** (1) Choose an offset value and make it the first character of
** output.
**
** (2) Copy each input character into the output buffer, one by
** one, adding the offset value as you copy.
**
** (3) If the value of an input character plus offset is 0x00, replace
** that one character by the two-character sequence 0x01 0x01.
** If the sum is 0x01, replace it with 0x01 0x02. If the sum
** is 0x27, replace it with 0x01 0x03.
**
** (4) Put a 0x00 terminator at the end of the output.
**
** Decoding is obvious:
**
** (5) Copy encoded characters except the first into the decode
** buffer. Set the first encoded character aside for use as
** the offset in step 7 below.
**
** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
** Convert 0x01 0x02 into 0x01. Convert 0x01 0x03 into 0x27.
**
** (7) Subtract the offset value that was the first character of
** the encoded buffer from all characters in the output buffer.
**
** The only tricky part is step (1) - how to compute an offset value to
** minimize the size of the output buffer. This is accomplished by testing
** all offset values and picking the one that results in the fewest number
** of escapes. To do that, we first scan the entire input and count the
** number of occurances of each character value in the input. Suppose
** the number of 0x00 characters is N(0), the number of occurances of 0x01
** is N(1), and so forth up to the number of occurances of 0xff is N(255).
** An offset of 0 is not allowed so we don't have to test it. The number
** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
** In this way we find the offset that gives the minimum number of escapes,
** and thus minimizes the length of the output string.
*/
/*
** Encode a binary buffer "in" of size n bytes so that it contains
** no instances of characters '\'' or '\000'. The output is
** null-terminated and can be used as a string value in an INSERT
** or UPDATE statement. Use sqlite3_decode_binary() to convert the
** string back into its original binary.
**
** The result is written into a preallocated output buffer "out".
** "out" must be able to hold at least 2 +(257*n)/254 bytes.
** In other words, the output will be expanded by as much as 3
** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
**
** The return value is the number of characters in the encoded
** string, excluding the "\000" terminator.
*/
int sqlite3_encode_binary(const unsigned char *in, int n, unsigned char *out){
int i, j, e, m;
int cnt[256];
if( n<=0 ){
out[0] = 'x';
out[1] = 0;
return 1;
}
memset(cnt, 0, sizeof(cnt));
for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
m = n;
for(i=1; i<256; i++){
int sum;
if( i=='\'' ) continue;
sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
if( sum<m ){
m = sum;
e = i;
if( m==0 ) break;
}
}
out[0] = e;
j = 1;
for(i=0; i<n; i++){
int c = (in[i] - e)&0xff;
if( c==0 ){
out[j++] = 1;
out[j++] = 1;
}else if( c==1 ){
out[j++] = 1;
out[j++] = 2;
}else if( c=='\'' ){
out[j++] = 1;
out[j++] = 3;
}else{
out[j++] = c;
}
}
out[j] = 0;
return j;
}
/*
** Decode the string "in" into binary data and write it into "out".
** This routine reverses the encoding created by sqlite3_encode_binary().
** The output will always be a few bytes less than the input. The number
** of bytes of output is returned. If the input is not a well-formed
** encoding, -1 is returned.
**
** The "in" and "out" parameters may point to the same buffer in order
** to decode a string in place.
*/
int sqlite3_decode_binary(const unsigned char *in, unsigned char *out){
int i, c, e;
e = *(in++);
i = 0;
while( (c = *(in++))!=0 ){
if( c==1 ){
c = *(in++);
if( c==1 ){
c = 0;
}else if( c==2 ){
c = 1;
}else if( c==3 ){
c = '\'';
}else{
return -1;
}
}
out[i++] = (c + e)&0xff;
}
return i;
}
/*****************************************************************************/
/* Check-in history */
/*
*$Log: $
*/
/*****************************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -