⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k9f1g08.c

📁 SMDK2442所有设备的驱动测试程序。运行monitor程序
💻 C
📖 第 1 页 / 共 2 页
字号:
//====================================================================
// File Name : Nand.c
// Function  : S3C2442 8-bit interface Nand Test program(this program use K9F1G08.c).
// Date      : Nov xx, 2004
// Version   : 0.0
// History
//   R0.0 (200305xx): Modified for 2442 from 2410. -> DonGo
//====================================================================


/**************** K9s1208 NAND flash ********************/
// 1block=(512+16)bytes x 32pages
// 4096block
/**************** K9F1G08 NAND flash *******************/
// 1block=(2048+64)bytes x 64pages
// 1024block
/*****************************************************/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "def.h"
#include "option.h"
#include "2442addr.h"
#include "2442lib.h"
#include "2442slib.h" 

//#include "Nand.h"
#include "K9F1G08.h"


#define BAD_CHECK	(0)
#define ECC_CHECK	(0)

#define C_LANG	1
#define DMA		2
#define TRANS_MODE 2

U8 NF1G08_Spare_Data[64];

extern U32 srcAddress;
extern U32 targetBlock;	    // Block number (0 ~ 4095)
extern U32 targetSize;	    // Total byte size 

extern U32 downloadAddress;
extern U32 downloadProgramSize;
volatile int NFConDone_1G08;

//*************************************************
//*************************************************
//**           H/W dependent functions           **
//************************************************* 
//*************************************************

//The code is made for bi-endian mode


#define NF_MECC_UnLock()         {rNFCONT&=~(1<<5);}
#define NF_MECC_Lock()         {rNFCONT|=(1<<5);}
#define NF_SECC_UnLock()         {rNFCONT&=~(1<<6);}
#define NF_SECC_Lock()         {rNFCONT|=(1<<6);}
#define NF_CMD(cmd)			{rNFCMD=cmd;}
#define NF_ADDR(addr)		{rNFADDR=addr;}	
#define NF_nFCE_L()			{rNFCONT&=~(1<<1);}
#define NF_nFCE_H()			{rNFCONT|=(1<<1);}

#define EXT_NF_nFCE_L()         {rGPADAT&=~(1<<16);}
#define EXT_NF_nFCE_H()         {rGPADAT|=(1<<16);}

#define NF_RSTECC()			{rNFCONT|=(1<<4);}
#define NF_RDDATA() 		(rNFDATA)
#define NF_RDDATA8() 		((*(volatile unsigned char*)0x4E000010) )
#define NF_WRDATA(data) 	{rNFDATA=data;}
#define NF_WRDATA8(data) 	{rNFDATA8=data;}

// RnB Signal
#define NF_CLEAR_RB()    		{rNFSTAT |= (1<<2);}	// Have write '1' to clear this bit.
#define NF_DETECT_RB()    		{while(!(rNFSTAT&(1<<2)));}


// HCLK=100Mhz
#define TACLS		7	// 1-clk(0ns) 
#define TWRPH0		7	// 3-clk(25ns)
#define TWRPH1		7	// 1-clk(10ns)  //TACLS+TWRPH0+TWRPH1>=50ns


static U8 se8Buf[64]={
	0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
	0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
	0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
	0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff
};


void __irq NFCon_Int_1G08(void);


//*************************************************



void * n1G08_func[][2]=
{
	(void *)NF1G08_Print_Id,			"Read ID         ",
	(void *)Nand_Reset,				"Nand reset      ",
	(void *)Test_NF1G08_Block_Erase,	"Block erase     ",
	(void *)Test_NF1G08_Page_Read,		"Page read       ",
	(void *)Test_NF1G08_Page_Write,	"Page write      ",
	(void *)Test_NF1G08_Rw,			"Nand R/W test   ",
	(void *) NF1G08_PrintBadBlockNum,	"Check Badblock  ",
	(void *)Test_NF1G08_Lock,			"Nand Block lock ",
	(void *)Test_NF1G08_SoftUnLock,	"Soft Unlock     ",
	(void *)NF1G08_Program,			"K9F1G08 Program ",
	
	0,0
};

/*
void Test_Nand(void)
{
	U8 ch;
	U32 gpacon;
	
	Uart_Printf("Nand test\n");
	
	
	rGPADAT|=(1<<16); //
	rGPACON=rGPACON&~(0x1<<16); // nGCS[5] -> OUTPUT

	gpacon = rGPACON;

	rGPACON = (rGPACON &~(0x3f<<17)) | (0x3f<<17);
	// GPA     22         21           20      19     18     17
	//           nFCE   nRSTOUT  nFRE  nFWE   ALE   CLE
       Uart_Printf("NFSTAT: 0x%x\n", rNFSTAT);
	Uart_Printf("Select Nand flash type, Normal(1)/Advanced(2) : ");

	ch=Uart_Getch();

	Uart_Printf("%c\n\n", ch);
	
	switch(ch) {
		case '1':
			Test_K9S1208();		// in Nand.c
		break;
		case '2':
			Test_K9F1G08();		// in K9F1G08.c
		break;
		default:
		break;
	}

	rGPACON = gpacon;
}

*/
void Test_K9F1G08(void)
{
	int i;
	U8 ch;

	Uart_Printf("\nK9F1G08 Nand flash test start.\n");

	NF1G08_Init();

	while(1) {
		PrintSubMessage();
		Uart_Printf("\nSelect(-1 to exit): ");
		i = Uart_GetIntNum();
		
		if(i==-1) break;
		
		if(i>=0 && (i<(sizeof(n1G08_func)/8)) ) 
	    	( (void (*)(void)) (n1G08_func[i][0]) )();	// execute selected function.
	}

}

/*
U8 Read_Status(void)
{
	// Read status
	U8 ch;
	int i;

	
	NF_nFCE_L();
      
	NF_CMD(0x70);
	for(i=0; i<10; i++);
	ch = NF_RDDATA();

	EXT_NF_nFCE_H();

	return ch;
}
*/
void NF1G08_Print_Id(void)
{
	U16 id;
	U8 maker, device;

//	NF1G08_Init();
	id = NF1G08_CheckId();
	
	device = (U8)id;
	maker = (U8)(id>>8);
	
	Uart_Printf("Maker:%x, Device:%x\n", maker, device);
}


void Test_NF1G08_Block_Erase(void)
{
	U32 block=0;

	Uart_Printf("(K9F1G08) NAND Block erase\n");

	if((Read_Status()&0x80)==0) {
		Uart_Printf("Write protected.\n");
		return;
	}

	Uart_Printf("Block # to erase: ");
	block = Uart_GetIntNum();

//	NF8_Init();
	
	if(NF1G08_EraseBlock(block)==FAIL) return;

	Uart_Printf("%d-block erased.\n", block);

}

void Test_NF1G08_Page_Read(void)
{
	U32 block=0, page=0;
	U32 i;
	unsigned char * downPt;
	
	downPt=(unsigned char *)_NONCACHE_STARTADDRESS;
		
	Uart_Printf("(K9F1G08) NAND Page Read.\n");

	Uart_Printf("Block # to read: ");
	block = Uart_GetIntNum();
	Uart_Printf("Page # to read: ");
	page = Uart_GetIntNum();

	if(NF1G08_ReadPage(block, page, (U8 *)downPt )==FAIL) {
		Uart_Printf("Read error.\n");
	} else {
		Uart_Printf("Read OK.\n");
	}
	// Print data.
	Uart_Printf("Read data(%d-block,%d-page)\n", block, page);
	
	for(i=0; i<2048; i++) {
		if((i%16)==0) Uart_Printf("\n%4x: ", i);
		Uart_Printf("%02x ", *(U8 *)downPt++);
		}
	Uart_Printf("\n");
	Uart_Printf("Spare:");
	for(i=0; i<64; i++) {
		if((i%16)==0) Uart_Printf("\n%4x: ", i);
	 	Uart_Printf("%02x ", NF1G08_Spare_Data[i]);
	}
	Uart_Printf("\n");

}

void Test_NF1G08_Page_Write(void)
{
	U32 block=0, page=0;
	int i, offset;
	unsigned char * srcPt;
	srcPt=(unsigned char *)0x31100000;
		
	Uart_Printf("(K9F1G08) NAND Page Write.\n");
	Uart_Printf("You must erase block before you write data!!! \n");

	Uart_Printf("Block # to write: ");
	block = Uart_GetIntNum();
	Uart_Printf("Page # to write: ");
	page = Uart_GetIntNum();
	Uart_Printf("offset data(-1:random): ");
	offset = Uart_GetIntNum();

#if ADS10==TRUE
	srand(0);
#endif


	// Init wdata.
	for(i=0; i<2048; i++) {
	#if ADS10==TRUE
		if(offset==-1) *srcPt++ = rand()%0xff;
	#else
		if(offset==-1) *srcPt++ = i%0xff;
	#endif
		else *srcPt++ =  i+offset;
	}
       srcPt=(unsigned char *)0x31100000;
	Uart_Printf("Write data[%d block, %d page].\n", block, page);
	if(NF1G08_WritePage(block, page, srcPt)==FAIL) {
		Uart_Printf("Write Error.\n");
	} else {
		Uart_Printf("Write OK.\n");
	}

 	Uart_Printf("Write data is");
	for(i=0; i<2048; i++) {
		if((i%16)==0) Uart_Printf("\n%4x: ", i);
		Uart_Printf("%02x ", *srcPt++);
	}
	Uart_Printf("\n");

	Uart_Printf("Spare:");
	for(i=0; i<64; i++) {
		if((i%16)==0) Uart_Printf("\n%4x: ", i);
	 	Uart_Printf("%02x ", NF1G08_Spare_Data[i]);
	}
	Uart_Printf("\n\n");



}


void Test_NF1G08_Rw(void)
{
	U32 block=0, page=0;
	U32 i, status=FAIL, error, offset;
	unsigned char *srcPt, *dstPt;
	srcPt=(unsigned char *)0x31100000;
	dstPt=(unsigned char *)0x31200000;
		
	Uart_Printf("(K9F1G08) NAND Flash R/W test.\n");

	Uart_Printf("Block number: ");
	block = Uart_GetIntNum();
	Uart_Printf("Page nember: ");
	page = Uart_GetIntNum();
	Uart_Printf("offset data(-1:random): ");
	offset = Uart_GetIntNum();

#if ADS10==TRUE
	srand(0);
#endif
	
	// Init R/W data.
	for(i=0; i<2048; i++) *dstPt++=0x0;

	for(i=0; i<2048; i++) {
	#if ADS10==TRUE
		if(offset==-1) *srcPt++ = rand()%0xff;
	#else
		if(offset==-1) *srcPt++ = i%0xff;
	#endif
		else *srcPt++ = i+offset;
	}
	


	srcPt=(unsigned char *)0x31100000;
	dstPt=(unsigned char *)0x31200000;
	// Block erase
	Uart_Printf("%d block erase.\n", block);
	if(NF1G08_EraseBlock(block)==FAIL) return;

	Uart_Printf("Write data[%d block, %d page].\n", block, page);
	if(NF1G08_WritePage(block, page, srcPt)==FAIL) return;
	
	Uart_Printf("Read data.\n");
	if(NF1G08_ReadPage(block, page, dstPt)==FAIL) return;

	Uart_Printf("Checking data.\n");
	for(error=0, i=0; i<2048; i++) {
		if(*srcPt++!=*dstPt++) {
			Uart_Printf("Error:%d[W:%x,R:%x]\n", i, *srcPt, *dstPt);
			error++;
		}
	}
	if(error!=0) 
		Uart_Printf("Fail to R/W test(%d).\n", error);
	else
		Uart_Printf("R/W test OK.\n");
}


void NF1G08_Program(void)
{
//    unsigned long interrupt_reservoir;
    int i;
    int programError=0;
	U8 *srcPt,*saveSrcPt;
	U32 blockIndex;

  	Uart_Printf("\n[(K9F1G08) NAND Flash writing program]\n");
       Uart_Printf("The program buffer: 0x30100000~0x31ffffff\n");

//	NF8_Init();

      rINTMSK = BIT_ALLMSK; 	
      srcAddress=0x30100000; 

      InputTargetBlock();
	
      srcPt=(U8 *)srcAddress;
      blockIndex=targetBlock;

     while(1) {
        saveSrcPt=srcPt;	

		#if BAD_CHECK
		if(NF1G08_IsBadBlock(blockIndex)==FAIL) {
		    blockIndex++;   // for next block
		    continue;
		}
		#endif

		if(NF1G08_EraseBlock(blockIndex)==FAIL) {
		    blockIndex++;   // for next block
		    continue;
		}

		// After 1-Block erase, Write 1-Block(32 pages).
		for(i=0;i<64;i++) {
		    if(NF1G08_WritePage(blockIndex,i,srcPt)==FAIL) {// block num, page num, buffer
		        programError=1;
		        break;
		    }

		#if ECC_CHECK
		    if(NF1G08_ReadPage(blockIndex,i,srcPt)==FAIL) {
				Uart_Printf("ECC Error(block=%d,page=%d!!!\n",blockIndex,i);
		    }
		#endif
			
		srcPt+=2048;	// Increase buffer addr one pase size
		if(i==0)  Uart_Printf(".");
			//Uart_Printf("\b\b\b\b\b\b\b\b%04d,%02d]", blockIndex, i);
		if((U32)srcPt>=(srcAddress+targetSize)) // Check end of buffer
		break;	// Exit for loop
		}
		
		if(programError==1) {
		    blockIndex++;
		    srcPt=saveSrcPt;
		    programError=0;
		    continue;
		}

		if((U32)srcPt>=(srcAddress+targetSize)) break;	// Exit while loop

		blockIndex++;
    }

}

/*
void InputTargetBlock(void)
{
	U32 no_block, no_page, no_byte;
	
	Uart_Printf("\nSource size:0h~%xh\n",downloadProgramSize);
	Uart_Printf("\nAvailable target block number: 0~1023\n");
	Uart_Printf("Input target block number:");
    targetBlock=Uart_GetIntNum();	// Block number(0~4095)
    if(targetSize==0)
    {
    	#if 0
    	Uart_Printf("Input target size(0x20000*n):");
    	targetSize=Uart_GetIntNum();	// Total byte size
	#else
   	Uart_Printf("Input program file size(bytes): ");
    	targetSize=Uart_GetIntNum();	// Total byte size
    	#endif
    }
	
	no_block = (U32)((targetSize/2048)/64);
	no_page = (U32)((targetSize/2048)%64);
	no_byte = (U32)(targetSize%2048);
	Uart_Printf("File:%d[%d-block,%d-page,%d-bytes].\n", targetSize, no_block, no_page, no_byte);
}
*/

void NF1G08_PrintBadBlockNum(void)
{
    int i;
    U16 id;

    Uart_Printf("\n[(K9F1G08) NAND Flash bad block check]\n");
    
    id=NF1G08_CheckId();
    Uart_Printf("ID=%x(0xeca1)\n",id);
    if(id!=0xeca1)
    return;
    for(i=0;i<1024;i++)  	NF1G08_IsBadBlock(i);   // Print bad block
}


void Test_NF1G08_Lock(void)
{
       U32 num;
       U32 S_block, E_block;
	Uart_Printf("(K9F1G08) NAND Lock Test !!!\n");
	Uart_Printf("Select Lock type, Softlock(1)/Lock-tight(2) : ");

	num=Uart_GetIntNum();;
			
	Uart_Printf("\nEnter programmable start block address ");
	S_block = Uart_GetIntNum();
	Uart_Printf("Enter programmable end block address ");
       E_block = Uart_GetIntNum();

	rNFSBLK=(S_block<<6);
	rNFEBLK=(E_block<<6);
	
	if(num==1){
		rNFCONT|=(1<<12);
              Uart_Printf("Software Locked\n ");
	}
	if(num==2){
		rNFCONT|=(1<<13);
              Uart_Printf("Lock-tight: To clear Lock-tight, reset S3C2442!!!\n ");
	}
      Uart_Printf("%d block ~ %d block are Programmable\n ", S_block, (E_block-1));
}


void Test_NF1G08_SoftUnLock(void)
{
       U32 S_block, E_block;
	Uart_Printf("(K9F1G08) NAND SoftUnLock Test !!!\n");
	
	

	rNFCONT&=~(1<<12);
	if(rNFCONT&(1<<13)){
		rNFCONT&=~(1<<13);
		Uart_Printf("Lock-tight\n ");
		Uart_Printf("You can't unlock Protected blocks !!!\n ");
		Uart_Printf("%d block ~ %d block are Programmable\n ", (rNFSBLK>>6), ((rNFEBLK>>6)-1));
	}
       else Uart_Printf("All blocks are Programmable\n ");

	rNFSBLK=0x0;
	rNFEBLK=0x0;
}

/*
void PrintSubMessage(void)
{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -