⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trees.c

📁 给出了 zip 压缩算法的完整实现过程。
💻 C
📖 第 1 页 / 共 4 页
字号:
/* Number of valid bits in bi_buf.  All bits above the last valid bit * are always zero. */#if (!defined(ASMV) || !defined(RISCOS))local char *out_buf;#elsechar *out_buf;#endif/* Current output buffer. */#if (!defined(ASMV) || !defined(RISCOS))local unsigned out_offset;#elseunsigned out_offset;#endif/* Current offset in output buffer. * On 16 bit machines, the buffer is limited to 64K. */#if !defined(ASMV) || !defined(RISCOS)local unsigned out_size;#elseunsigned out_size;#endif/* Size of current output buffer *//* Output a 16 bit value to the bit stream, lower (oldest) byte first */#define PUTSHORT(w) \{ if (out_offset >= out_size-1) \    flush_outbuf(out_buf, &out_offset); \  out_buf[out_offset++] = (char) ((w) & 0xff); \  out_buf[out_offset++] = (char) ((ush)(w) >> 8); \}#define PUTBYTE(b) \{ if (out_offset >= out_size) \    flush_outbuf(out_buf, &out_offset); \  out_buf[out_offset++] = (char) (b); \}#ifdef DEBUGlocal ulg bits_sent;   /* bit length of the compressed data */extern ulg isize;      /* byte length of input file */#endifextern long block_start;       /* window offset of current block */extern unsigned near strstart; /* window offset of current string *//* =========================================================================== * Local (static) routines in this file. */local void init_block     OF((void));local void pqdownheap     OF((ct_data near *tree, int k));local void gen_bitlen     OF((tree_desc near *desc));local void gen_codes      OF((ct_data near *tree, int max_code));local void build_tree     OF((tree_desc near *desc));local void scan_tree      OF((ct_data near *tree, int max_code));local void send_tree      OF((ct_data near *tree, int max_code));local int  build_bl_tree  OF((void));local void send_all_trees OF((int lcodes, int dcodes, int blcodes));local void compress_block OF((ct_data near *ltree, ct_data near *dtree));local void set_file_type  OF((void));#if (!defined(ASMV) || !defined(RISCOS))local void send_bits      OF((int value, int length));local unsigned bi_reverse OF((unsigned code, int len));#endiflocal void bi_windup      OF((void));local void copy_block     OF((char *buf, unsigned len, int header));#ifndef DEBUG#  define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)   /* Send a code of the given tree. c and tree must not have side effects */#else /* DEBUG */#  define send_code(c, tree) \     { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \       send_bits(tree[c].Code, tree[c].Len); }#endif#define d_code(dist) \   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])/* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. dist_code[256] and dist_code[257] are never * used. */#define Max(a,b) (a >= b ? a : b)/* the arguments must not have side effects *//* =========================================================================== * Allocate the match buffer, initialize the various tables and save the * location of the internal file attribute (ascii/binary) and method * (DEFLATE/STORE). */void ct_init(attr, method)    ush  *attr;   /* pointer to internal file attribute */    int  *method; /* pointer to compression method */{    int n;        /* iterates over tree elements */    int bits;     /* bit counter */    int length;   /* length value */    int code;     /* code value */    int dist;     /* distance index */    file_type = attr;    file_method = method;    cmpr_bytelen = cmpr_len_bits = 0L;#ifdef DEBUG    input_len = 0L;#endif    if (static_dtree[0].Len != 0) return; /* ct_init already called */#ifdef DYN_ALLOC    d_buf = (ush far *) zcalloc(DIST_BUFSIZE, sizeof(ush));    l_buf = (uch far *) zcalloc(LIT_BUFSIZE/2, 2);    /* Avoid using the value 64K on 16 bit machines */    if (l_buf == NULL || d_buf == NULL)        ziperr(ZE_MEM, "ct_init: out of memory");#endif    /* Initialize the mapping length (0..255) -> length code (0..28) */    length = 0;    for (code = 0; code < LENGTH_CODES-1; code++) {        base_length[code] = length;        for (n = 0; n < (1<<extra_lbits[code]); n++) {            length_code[length++] = (uch)code;        }    }    Assert(length == 256, "ct_init: length != 256");    /* Note that the length 255 (match length 258) can be represented     * in two different ways: code 284 + 5 bits or code 285, so we     * overwrite length_code[255] to use the best encoding:     */    length_code[length-1] = (uch)code;    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */    dist = 0;    for (code = 0 ; code < 16; code++) {        base_dist[code] = dist;        for (n = 0; n < (1<<extra_dbits[code]); n++) {            dist_code[dist++] = (uch)code;        }    }    Assert(dist == 256, "ct_init: dist != 256");    dist >>= 7; /* from now on, all distances are divided by 128 */    for ( ; code < D_CODES; code++) {        base_dist[code] = dist << 7;        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {            dist_code[256 + dist++] = (uch)code;        }    }    Assert(dist == 256, "ct_init: 256+dist != 512");    /* Construct the codes of the static literal tree */    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;    n = 0;    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;    /* Codes 286 and 287 do not exist, but we must include them in the     * tree construction to get a canonical Huffman tree (longest code     * all ones)     */    gen_codes((ct_data near *)static_ltree, L_CODES+1);    /* The static distance tree is trivial: */    for (n = 0; n < D_CODES; n++) {        static_dtree[n].Len = 5;        static_dtree[n].Code = (ush)bi_reverse(n, 5);    }    /* Initialize the first block of the first file: */    init_block();}/* =========================================================================== * Initialize a new block. */local void init_block(){    int n; /* iterates over tree elements */    /* Initialize the trees. */    for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;    for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;    for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;    dyn_ltree[END_BLOCK].Freq = 1;    opt_len = static_len = 0L;    last_lit = last_dist = last_flags = 0;    flags = 0; flag_bit = 1;}#define SMALLEST 1/* Index within the heap array of least frequent node in the Huffman tree *//* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */#define pqremove(tree, top) \{\    top = heap[SMALLEST]; \    heap[SMALLEST] = heap[heap_len--]; \    pqdownheap(tree, SMALLEST); \}/* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */#define smaller(tree, n, m) \   (tree[n].Freq < tree[m].Freq || \   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */local void pqdownheap(tree, k)    ct_data near *tree;  /* the tree to restore */    int k;               /* node to move down */{    int v = heap[k];    int j = k << 1;  /* left son of k */    int htemp;       /* required because of bug in SASC compiler */    while (j <= heap_len) {        /* Set j to the smallest of the two sons: */        if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;        /* Exit if v is smaller than both sons */        htemp = heap[j];        if (smaller(tree, v, htemp)) break;        /* Exchange v with the smallest son */        heap[k] = htemp;        k = j;        /* And continue down the tree, setting j to the left son of k */        j <<= 1;    }    heap[k] = v;}/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and *    above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the *     array bl_count contains the frequencies for each bit length. *     The length opt_len is updated; static_len is also updated if stree is *     not null. */local void gen_bitlen(desc)    tree_desc near *desc; /* the tree descriptor */{    ct_data near *tree  = desc->dyn_tree;    int near *extra     = desc->extra_bits;    int base            = desc->extra_base;    int max_code        = desc->max_code;    int max_length      = desc->max_length;    ct_data near *stree = desc->static_tree;    int h;              /* heap index */    int n, m;           /* iterate over the tree elements */    int bits;           /* bit length */    int xbits;          /* extra bits */    ush f;              /* frequency */    int overflow = 0;   /* number of elements with bit length too large */    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;    /* In a first pass, compute the optimal bit lengths (which may     * overflow in the case of the bit length tree).     */    tree[heap[heap_max]].Len = 0; /* root of the heap */    for (h = heap_max+1; h < HEAP_SIZE; h++) {        n = heap[h];        bits = tree[tree[n].Dad].Len + 1;        if (bits > max_length) bits = max_length, overflow++;        tree[n].Len = (ush)bits;        /* We overwrite tree[n].Dad which is no longer needed */        if (n > max_code) continue; /* not a leaf node */        bl_count[bits]++;        xbits = 0;        if (n >= base) xbits = extra[n-base];        f = tree[n].Freq;        opt_len += (ulg)f * (bits + xbits);        if (stree) static_len += (ulg)f * (stree[n].Len + xbits);    }    if (overflow == 0) return;    Trace((stderr,"\nbit length overflow\n"));    /* This happens for example on obj2 and pic of the Calgary corpus */    /* Find the first bit length which could increase: */    do {        bits = max_length-1;        while (bl_count[bits] == 0) bits--;        bl_count[bits]--;           /* move one leaf down the tree */        bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */        bl_count[max_length]--;        /* The brother of the overflow item also moves one step up,         * but this does not affect bl_count[max_length]         */        overflow -= 2;    } while (overflow > 0);    /* Now recompute all bit lengths, scanning in increasing frequency.     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all     * lengths instead of fixing only the wrong ones. This idea is taken     * from 'ar' written by Haruhiko Okumura.)     */    for (bits = max_length; bits != 0; bits--) {        n = bl_count[bits];        while (n != 0) {            m = heap[--h];            if (m > max_code) continue;            if (tree[m].Len != (ush)bits) {                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));                opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;                tree[m].Len = (ush)bits;            }            n--;        }    }}/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non *     zero code length. */local void gen_codes (tree, max_code)    ct_data near *tree;        /* the tree to decorate */    int max_code;              /* largest code with non zero frequency */{    ush next_code[MAX_BITS+1]; /* next code value for each bit length */    ush code = 0;              /* running code value */    int bits;                  /* bit index */    int n;                     /* code index */    /* The distribution counts are first used to generate the code values     * without bit reversal.     */    for (bits = 1; bits <= MAX_BITS; bits++) {        next_code[bits] = code = (ush)((code + bl_count[bits-1]) << 1);    }    /* Check that the bit counts in bl_count are consistent. The last code

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -