⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jchuff.c

📁 GIS系统支持库Geospatial Data Abstraction Library代码.GDAL is a translator library for raster geospatial dat
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * jchuff.c * * Copyright (C) 1991-1997, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines. * * Much of the complexity here has to do with supporting output suspension. * If the data destination module demands suspension, we want to be able to * back up to the start of the current MCU.  To do this, we copy state * variables into local working storage, and update them back to the * permanent JPEG objects only upon successful completion of an MCU. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jchuff.h"		/* Declarations shared with jcphuff.c *//* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */typedef struct {  INT32 put_buffer;		/* current bit-accumulation buffer */  int put_bits;			/* # of bits now in it */  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */} savable_state;/* This macro is to work around compilers with missing or broken * structure assignment.  You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */#ifndef NO_STRUCT_ASSIGN#define ASSIGN_STATE(dest,src)  ((dest) = (src))#else#if MAX_COMPS_IN_SCAN == 4#define ASSIGN_STATE(dest,src)  \	((dest).put_buffer = (src).put_buffer, \	 (dest).put_bits = (src).put_bits, \	 (dest).last_dc_val[0] = (src).last_dc_val[0], \	 (dest).last_dc_val[1] = (src).last_dc_val[1], \	 (dest).last_dc_val[2] = (src).last_dc_val[2], \	 (dest).last_dc_val[3] = (src).last_dc_val[3])#endif#endiftypedef struct {  struct jpeg_entropy_encoder pub; /* public fields */  savable_state saved;		/* Bit buffer & DC state at start of MCU */  /* These fields are NOT loaded into local working state. */  unsigned int restarts_to_go;	/* MCUs left in this restart interval */  int next_restart_num;		/* next restart number to write (0-7) */  /* Pointers to derived tables (these workspaces have image lifespan) */  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */  long * dc_count_ptrs[NUM_HUFF_TBLS];  long * ac_count_ptrs[NUM_HUFF_TBLS];#endif} huff_entropy_encoder;typedef huff_entropy_encoder * huff_entropy_ptr;/* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */typedef struct {  JOCTET * next_output_byte;	/* => next byte to write in buffer */  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */  savable_state cur;		/* Current bit buffer & DC state */  j_compress_ptr cinfo;		/* dump_buffer needs access to this */} working_state;/* Forward declarations */METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,					JBLOCKROW *MCU_data));METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));#ifdef ENTROPY_OPT_SUPPORTEDMETHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,					  JBLOCKROW *MCU_data));METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));#endif/* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */METHODDEF(void)start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics){  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  int ci, dctbl, actbl;  jpeg_component_info * compptr;  if (gather_statistics) {#ifdef ENTROPY_OPT_SUPPORTED    entropy->pub.encode_mcu = encode_mcu_gather;    entropy->pub.finish_pass = finish_pass_gather;#else    ERREXIT(cinfo, JERR_NOT_COMPILED);#endif  } else {    entropy->pub.encode_mcu = encode_mcu_huff;    entropy->pub.finish_pass = finish_pass_huff;  }  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {    compptr = cinfo->cur_comp_info[ci];    dctbl = compptr->dc_tbl_no;    actbl = compptr->ac_tbl_no;    if (gather_statistics) {#ifdef ENTROPY_OPT_SUPPORTED      /* Check for invalid table indexes */      /* (make_c_derived_tbl does this in the other path) */      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);      /* Allocate and zero the statistics tables */      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */      if (entropy->dc_count_ptrs[dctbl] == NULL)	entropy->dc_count_ptrs[dctbl] = (long *)	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,				      257 * SIZEOF(long));      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));      if (entropy->ac_count_ptrs[actbl] == NULL)	entropy->ac_count_ptrs[actbl] = (long *)	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,				      257 * SIZEOF(long));      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));#endif    } else {      /* Compute derived values for Huffman tables */      /* We may do this more than once for a table, but it's not expensive */      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,			      & entropy->dc_derived_tbls[dctbl]);      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,			      & entropy->ac_derived_tbls[actbl]);    }    /* Initialize DC predictions to 0 */    entropy->saved.last_dc_val[ci] = 0;  }  /* Initialize bit buffer to empty */  entropy->saved.put_buffer = 0;  entropy->saved.put_bits = 0;  /* Initialize restart stuff */  entropy->restarts_to_go = cinfo->restart_interval;  entropy->next_restart_num = 0;}/* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jcphuff.c. */GLOBAL(void)jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,			 c_derived_tbl ** pdtbl){  JHUFF_TBL *htbl;  c_derived_tbl *dtbl;  int p, i, l, lastp, si, maxsymbol;  char huffsize[257];  unsigned int huffcode[257];  unsigned int code;  /* Note that huffsize[] and huffcode[] are filled in code-length order,   * paralleling the order of the symbols themselves in htbl->huffval[].   */  /* Find the input Huffman table */  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  htbl =    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];  if (htbl == NULL)    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  /* Allocate a workspace if we haven't already done so. */  if (*pdtbl == NULL)    *pdtbl = (c_derived_tbl *)      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,				  SIZEOF(c_derived_tbl));  dtbl = *pdtbl;    /* Figure C.1: make table of Huffman code length for each symbol */  p = 0;  for (l = 1; l <= 16; l++) {    i = (int) htbl->bits[l];    if (i < 0 || p + i > 256)	/* protect against table overrun */      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);    while (i--)      huffsize[p++] = (char) l;  }  huffsize[p] = 0;  lastp = p;    /* Figure C.2: generate the codes themselves */  /* We also validate that the counts represent a legal Huffman code tree. */  code = 0;  si = huffsize[0];  p = 0;  while (huffsize[p]) {    while (((int) huffsize[p]) == si) {      huffcode[p++] = code;      code++;    }    /* code is now 1 more than the last code used for codelength si; but     * it must still fit in si bits, since no code is allowed to be all ones.     */    if (((INT32) code) >= (((INT32) 1) << si))      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);    code <<= 1;    si++;  }    /* Figure C.3: generate encoding tables */  /* These are code and size indexed by symbol value */  /* Set all codeless symbols to have code length 0;   * this lets us detect duplicate VAL entries here, and later   * allows emit_bits to detect any attempt to emit such symbols.   */  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));  /* This is also a convenient place to check for out-of-range   * and duplicated VAL entries.  We allow 0..255 for AC symbols   * but only 0..15 for DC.  (We could constrain them further   * based on data depth and mode, but this seems enough.)   */  maxsymbol = isDC ? 15 : 255;  for (p = 0; p < lastp; p++) {    i = htbl->huffval[p];    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);    dtbl->ehufco[i] = huffcode[p];    dtbl->ehufsi[i] = huffsize[p];  }}/* Outputting bytes to the file *//* Emit a byte, taking 'action' if must suspend. */#define emit_byte(state,val,action)  \	{ *(state)->next_output_byte++ = (JOCTET) (val);  \	  if (--(state)->free_in_buffer == 0)  \	    if (! dump_buffer(state))  \	      { action; } }LOCAL(boolean)dump_buffer (working_state * state)/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */{  struct jpeg_destination_mgr * dest = state->cinfo->dest;  if (! (*dest->empty_output_buffer) (state->cinfo))    return FALSE;  /* After a successful buffer dump, must reset buffer pointers */  state->next_output_byte = dest->next_output_byte;  state->free_in_buffer = dest->free_in_buffer;  return TRUE;}/* Outputting bits to the file *//* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part.  At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */INLINELOCAL(boolean)emit_bits (working_state * state, unsigned int code, int size)/* Emit some bits; return TRUE if successful, FALSE if must suspend */{  /* This routine is heavily used, so it's worth coding tightly. */  register INT32 put_buffer = (INT32) code;  register int put_bits = state->cur.put_bits;  /* if size is 0, caller used an invalid Huffman table entry */  if (size == 0)    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */    put_bits += size;		/* new number of bits in buffer */    put_buffer <<= 24 - put_bits; /* align incoming bits */  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */    while (put_bits >= 8) {    int c = (int) ((put_buffer >> 16) & 0xFF);        emit_byte(state, c, return FALSE);    if (c == 0xFF) {		/* need to stuff a zero byte? */      emit_byte(state, 0, return FALSE);    }    put_buffer <<= 8;    put_bits -= 8;  }  state->cur.put_buffer = put_buffer; /* update state variables */  state->cur.put_bits = put_bits;  return TRUE;}LOCAL(boolean)flush_bits (working_state * state){  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */    return FALSE;  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */  state->cur.put_bits = 0;  return TRUE;}/* Encode a single block's worth of coefficients */LOCAL(boolean)encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,		  c_derived_tbl *dctbl, c_derived_tbl *actbl){  register int temp, temp2;  register int nbits;  register int k, r, i;    /* Encode the DC coefficient difference per section F.1.2.1 */    temp = temp2 = block[0] - last_dc_val;  if (temp < 0) {    temp = -temp;		/* temp is abs value of input */    /* For a negative input, want temp2 = bitwise complement of abs(input) */    /* This code assumes we are on a two's complement machine */    temp2--;  }    /* Find the number of bits needed for the magnitude of the coefficient */  nbits = 0;  while (temp) {    nbits++;    temp >>= 1;  }  /* Check for out-of-range coefficient values.   * Since we're encoding a difference, the range limit is twice as much.   */  if (nbits > MAX_COEF_BITS+1)    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);    /* Emit the Huffman-coded symbol for the number of bits */  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))    return FALSE;  /* Emit that number of bits of the value, if positive, */  /* or the complement of its magnitude, if negative. */  if (nbits)			/* emit_bits rejects calls with size 0 */    if (! emit_bits(state, (unsigned int) temp2, nbits))      return FALSE;  /* Encode the AC coefficients per section F.1.2.2 */    r = 0;			/* r = run length of zeros */    for (k = 1; k < DCTSIZE2; k++) {    if ((temp = block[jpeg_natural_order[k]]) == 0) {      r++;    } else {      /* if run length > 15, must emit special run-length-16 codes (0xF0) */      while (r > 15) {	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))	  return FALSE;	r -= 16;      }      temp2 = temp;      if (temp < 0) {	temp = -temp;		/* temp is abs value of input */	/* This code assumes we are on a two's complement machine */	temp2--;      }            /* Find the number of bits needed for the magnitude of the coefficient */      nbits = 1;		/* there must be at least one 1 bit */      while ((temp >>= 1))	nbits++;      /* Check for out-of-range coefficient values */      if (nbits > MAX_COEF_BITS)	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);            /* Emit Huffman symbol for run length / number of bits */      i = (r << 4) + nbits;      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))	return FALSE;      /* Emit that number of bits of the value, if positive, */      /* or the complement of its magnitude, if negative. */      if (! emit_bits(state, (unsigned int) temp2, nbits))	return FALSE;            r = 0;    }  }  /* If the last coef(s) were zero, emit an end-of-block code */  if (r > 0)    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))      return FALSE;  return TRUE;}/* * Emit a restart marker & resynchronize predictions. */LOCAL(boolean)emit_restart (working_state * state, int restart_num){  int ci;  if (! flush_bits(state))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -