⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmc.cpp

📁 一个用于智能手机的多媒体库适合S60 WinCE的跨平台开发库
💻 CPP
字号:
/***************************************************************************** * *  XVID MPEG-4 VIDEO CODEC *  - GMC interpolation module - * *  Copyright(C) 2002-2003 Pascal Massimino <skal@planet-d.net> * *  This program is free software ; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation ; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY ; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program ; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA * * $Id: gmc.cpp,v 1.1.1.1 2005/07/13 14:36:14 jeanlf Exp $ * ****************************************************************************/#include "portab.h"#include "global.h"#include "gmc.h"/* ************************************************************ * Pts = 2 or 3 * * Warning! *src is the global frame pointer (that is: adress * of pixel 0,0), not the macroblock one. * Conversely, *dst is the macroblock top-left adress. */static void Predict_16x16_C(const NEW_GMC_DATA * const This, byte *dst, const byte *src, int dststride, int srcstride, int x, int y, int rounding){   const int W = This->sW;   const int H = This->sH;   const int rho = 3 - This->accuracy;   const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;   const int dUx = This->dU[0];   const int dVx = This->dV[0];   const int dUy = This->dU[1];   const int dVy = This->dV[1];   int Uo = This->Uo + 16*(dUy*y + dUx*x);   int Vo = This->Vo + 16*(dVy*y + dVx*x);   int i, j;   dst += 16;   for (j=16; j>0; --j) {      int U = Uo, V = Vo;      Uo += dUy; Vo += dVy;      for (i=-16; i<0; ++i) {         unsigned int f0, f1, ri = 16, rj = 16;         int Offset;         int u = ( U >> 16 ) << rho;         int v = ( V >> 16 ) << rho;         U += dUx; V += dVx;         if (u > 0 && u <= W) { ri = MTab[u&15]; Offset = u>>4;   }         else if (u > W) Offset = W>>4;         else Offset = -1;         if (v > 0 && v <= H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; }         else if (v > H) Offset += (H>>4)*srcstride;         else Offset -= srcstride;         f0 = src[Offset + 0];         f0 |= src[Offset + 1] << 16;         f1 = src[Offset + srcstride + 0];         f1 |= src[Offset + srcstride + 1] << 16;         f0 = (ri*f0)>>16;         f1 = (ri*f1) & 0x0fff0000;         f0 |= f1;         f0 = (rj*f0 + Rounder) >> 24;         dst[i] = (byte)f0;      }      dst += dststride;   }}//----------------------------static void Predict_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,   byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding){   const int W  = This->sW >> 1;   const int H  = This->sH >> 1;   const int rho = 3-This->accuracy;   const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;   const int dUx = This->dU[0];   const int dVx = This->dV[0];   const int dUy = This->dU[1];   const int dVy = This->dV[1];   int Uo = This->Uco + 8*(dUy*y + dUx*x);   int Vo = This->Vco + 8*(dVy*y + dVx*x);   int i, j;   uDst += 8;   vDst += 8;   for (j=8; j>0; --j) {      int U = Uo, V = Vo;      Uo += dUy; Vo += dVy;      for (i=-8; i<0; ++i) {         int Offset;         dword f0, f1, ri, rj;         int u, v;         u = ( U >> 16 ) << rho;         v = ( V >> 16 ) << rho;         U += dUx; V += dVx;         if (u > 0 && u <= W) {            ri = MTab[u&15];            Offset = u>>4;         } else {            ri = 16;            if (u>W) Offset = W>>4;            else Offset = -1;         }         if (v > 0 && v <= H) {            rj = MTab[v&15];            Offset += (v>>4)*srcstride;         } else {            rj = 16;            if (v>H) Offset += (H>>4)*srcstride;            else Offset -= srcstride;         }         f0 = uSrc[Offset + 0];         f0 |= uSrc[Offset + 1] << 16;         f1 = uSrc[Offset + srcstride + 0];         f1 |= uSrc[Offset + srcstride + 1] << 16;         f0 = (ri*f0)>>16;         f1 = (ri*f1) & 0x0fff0000;         f0 |= f1;         f0 = (rj*f0 + Rounder) >> 24;         uDst[i] = (byte)f0;         f0 = vSrc[Offset + 0];         f0 |= vSrc[Offset + 1] << 16;         f1 = vSrc[Offset + srcstride + 0];         f1 |= vSrc[Offset + srcstride + 1] << 16;         f0 = (ri*f0)>>16;         f1 = (ri*f1) & 0x0fff0000;         f0 |= f1;         f0 = (rj*f0 + Rounder) >> 24;         vDst[i] = (byte)f0;      }      uDst += dststride;      vDst += dststride;   }}//----------------------------static void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv, int x, int y, int qpel){   int i, j;   int vx = 0, vy = 0;   int uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);   int vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);   for (j=16; j>0; --j)   {   int U, V;   U = uo; uo += Dsp->dU[1];   V = vo; vo += Dsp->dV[1];   for (i=16; i>0; --i)   {      int u,v;      u = U >> 16; U += Dsp->dU[0]; vx += u;      v = V >> 16; V += Dsp->dV[0]; vy += v;   }   }   vx -= (256*x+120) << (5+Dsp->accuracy);   /* 120 = 15*16/2 */   vy -= (256*y+120) << (5+Dsp->accuracy);   mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );   mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );}//----------------------------/* ************************************************************ * simplified version for 1 warp point */static void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This, byte *Dst, const byte *Src, int dststride, int srcstride, int x, int y, int rounding){   const int W  = This->sW;   const int H  = This->sH;   const int rho = 3-This->accuracy;   const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;   int uo = This->Uo + (x<<8);    /* ((16*x)<<4) */   int vo = This->Vo + (y<<8);   const dword ri = MTab[uo & 15];   const dword rj = MTab[vo & 15];   int i, j;   int Offset;   if ((dword)vo<=(dword)H) Offset  = (vo>>4)*srcstride;   else if (vo>H)           Offset  = ( H>>4)*srcstride;   else                     Offset  =-16*srcstride;   if ((dword)uo<=(dword)W) Offset += (uo>>4);   else if (uo>W)           Offset += ( W>>4);   else                     Offset -= 16;   Dst += 16;   for(j=16; j>0; --j, Offset+=srcstride-16)   {   for(i=-16; i<0; ++i, ++Offset)   {      dword f0, f1;      f0 = Src[ Offset     +0 ];      f0 |= Src[ Offset    +1 ] << 16;      f1 = Src[ Offset+srcstride +0 ];      f1 |= Src[ Offset+srcstride +1 ] << 16;      f0 = (ri*f0)>>16;      f1 = (ri*f1) & 0x0fff0000;      f0 |= f1;      f0 = ( rj*f0 + Rounder ) >> 24;      Dst[i] = (byte)f0;   }   Dst += dststride;   }}//----------------------------static void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,   byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding){   const int W  = This->sW >> 1;   const int H  = This->sH >> 1;   const int rho = 3-This->accuracy;   const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;   int uo = This->Uco + (x<<7);   int vo = This->Vco + (y<<7);   const dword rri = MTab[uo & 15];   const dword rrj = MTab[vo & 15];   int i, j;   int Offset;   if ((dword)vo<=(dword)H) Offset = (vo>>4)*srcstride;   else if (vo>H) Offset = ( H>>4)*srcstride;   else Offset =-8*srcstride;   if ((dword)uo<=(dword)W) Offset += (uo>>4);   else if (uo>W) Offset += (W>>4);   else Offset -= 8;   uDst += 8;   vDst += 8;   for(j=8; j>0; --j, Offset+=srcstride-8)   {   for(i=-8; i<0; ++i, Offset++)   {      dword f0, f1;      f0 = uSrc[ Offset + 0 ];      f0 |= uSrc[ Offset + 1 ] << 16;      f1 = uSrc[ Offset + srcstride + 0 ];      f1 |= uSrc[ Offset + srcstride + 1 ] << 16;      f0 = (rri*f0)>>16;      f1 = (rri*f1) & 0x0fff0000;      f0 |= f1;      f0 = ( rrj*f0 + Rounder ) >> 24;      uDst[i] = (byte)f0;      f0 = vSrc[ Offset + 0 ];      f0 |= vSrc[ Offset + 1 ] << 16;      f1 = vSrc[ Offset + srcstride + 0 ];      f1 |= vSrc[ Offset + srcstride + 1 ] << 16;      f0 = (rri*f0)>>16;      f1 = (rri*f1) & 0x0fff0000;      f0 |= f1;      f0 = ( rrj*f0 + Rounder ) >> 24;      vDst[i] = (byte)f0;   }   uDst += dststride;   vDst += dststride;   }}//----------------------------static void get_average_mv_1pt_C(const NEW_GMC_DATA *const Dsp, VECTOR * const mv, int x, int y, int qpel){   mv->x = RSHIFT(Dsp->Uo<<qpel, 3);   mv->y = RSHIFT(Dsp->Vo<<qpel, 3);}//----------------------------void generate_GMCparameters(int nb_pts, int accuracy, const WARPPOINTS *pts, int width, int height, NEW_GMC_DATA *gmc){   gmc->sW = width   << 4;   gmc->sH = height << 4;   gmc->accuracy = accuracy;   gmc->num_wp = nb_pts;                                //reduce the number of points, if possible   if(nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)){      if(nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)){         if(nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)){            nb_pts = 0;         }else            nb_pts = 1;      }else         nb_pts = 2;   }else      nb_pts = 3;                              //now, nb_pts stores the actual number of points required for interpolation   if(nb_pts<=1){      if(nb_pts==1){         /* store as 4b fixed point */         gmc->Uo = pts->duv[0].x << accuracy;         gmc->Vo = pts->duv[0].y << accuracy;         gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy;   /* DIV2RND() */         gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy;   /* DIV2RND() */      }else{   /* zero points?! */         gmc->Uo  = gmc->Vo   = 0;         gmc->Uco = gmc->Vco = 0;      }            gmc->predict_16x16   = Predict_1pt_16x16_C;      gmc->predict_8x8  = Predict_1pt_8x8_C;      gmc->get_average_mv = get_average_mv_1pt_C;   }else{      /* 2 or 3 points */      const int rho   = 3 - accuracy;  /* = {3,2,1,0} for Acc={0,1,2,3} */      int Alpha = log2bin(width-1);      int Ws = 1 << Alpha;            gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width );   /* dU/dx */      gmc->dV[0] =       RDIV( 8*Ws*pts->duv[1].y, width );  /* dV/dx */            /*  disabled, because possibly buggy? */      #if 0      if (nb_pts==2) {         gmc->dU[1] = -gmc->dV[0];  /* -Sin */         gmc->dV[1] =   gmc->dU[0] ;   /* Cos */      }      else#endif      {         const int Beta = log2bin(height-1);         const int Hs = 1<<Beta;         gmc->dU[1] =       RDIV( 8*Hs*pts->duv[2].x, height );    /* dU/dy */         gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height );  /* dV/dy */         if (Beta>Alpha) {            gmc->dU[0] <<= (Beta-Alpha);            gmc->dV[0] <<= (Beta-Alpha);            Alpha = Beta;            Ws = Hs;         }         else {            gmc->dU[1] <<= Alpha - Beta;            gmc->dV[1] <<= Alpha - Beta;         }      }      /* upscale to 16b fixed-point */      gmc->dU[0] <<= (16-Alpha - rho);      gmc->dU[1] <<= (16-Alpha - rho);      gmc->dV[0] <<= (16-Alpha - rho);      gmc->dV[1] <<= (16-Alpha - rho);            gmc->Uo  = ( pts->duv[0].x  <<(16+ accuracy)) + (1<<15);      gmc->Vo  = ( pts->duv[0].y  <<(16+ accuracy)) + (1<<15);      gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);      gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);      gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;      gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;            gmc->predict_16x16   = Predict_16x16_C;      gmc->predict_8x8  = Predict_8x8_C;      gmc->get_average_mv = get_average_mv_C;   }}//----------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -