⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 buffon.java

📁 Simulation Modeling,Statistical Analysis of Simulation Models,Discrete Event Simulation
💻 JAVA
字号:
/* ------------------------------------------------------------------------- * A Monte Carlo simulation of Buffon's needle experiment. * * Name              : Buffon.java * Authors           : Steve Park & Dave Geyer * Translated by     : Jun Wang & Richard Dutton * Language          : Java * Latest Revision   : 6-16-06 * -------------------------------------------------------------------------  */import java.io.*;import java.util.*;import java.lang.*;import java.text.*;class Buffon {  static long   N       = 10000;              /* number of replications */  static double HALF_PI = Math.PI / 2;        /* 1.5707963...           */  static double R       = 1.0;                /* length of the needle   */  public static void main(String[] args) {          long   i;                                 /* replication index      */    long   crosses = 0;                       /* number of crosses      */    double p;                                 /* estimated probability  */    double u, v;                              /* endpoints              */    double theta;                             /* angle                  */    long   seed;                              /* the initial rng seed   */    long   j;    Buffon b = new Buffon();    Rng r = new Rng();    r.putSeed(-1);                 /* any negative integer will do      */    seed = r.getSeed();            /* trap the value of the intial seed */    for (i = 0; i < N; i++) {      u     = r.random();      theta = b.uniform(-HALF_PI, HALF_PI, r);      v     = u + R * Math.cos(theta);      if (v > 1.0)        crosses++;    }    p = (double) crosses / N;                 /* estimate the probability */    DecimalFormat f = new DecimalFormat("###0.00");    DecimalFormat g = new DecimalFormat("###0.000");    System.out.println("\nbased on " + N + " replications and a needle of length " + f.format(R));    System.out.println("with an initial seed of " + seed);    System.out.println("the estimated probability of a cross is " + g.format(p) + "\n");  }     double uniform(double a, double b, Rng r) {/* ------------------------------------------------ * generate a Uniform random variate, use a < b  * ------------------------------------------------ */    return (a + (b - a) * r.random());  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -