📄 rvgs.java
字号:
/* --------------------------------------------------------------------------
* This is a Java library for generating random variates from six discrete
* distributions
*
* Generator Range (x) Mean Variance
*
* bernoulli(p) x = 0,1 p p*(1-p)
* binomial(n, p) x = 0,...,n n*p n*p*(1-p)
* equilikely(a, b) x = a,...,b (a+b)/2 ((b-a+1)*(b-a+1)-1)/12
* Geometric(p) x = 0,... p/(1-p) p/((1-p)*(1-p))
* pascal(n, p) x = 0,... n*p/(1-p) n*p/((1-p)*(1-p))
* poisson(m) x = 0,... m m
*
* and seven continuous distributions
*
* uniform(a, b) a < x < b (a + b)/2 (b - a)*(b - a)/12
* exponential(m) x > 0 m m*m
* erlang(n, b) x > 0 n*b n*b*b
* normal(m, s) all x m s*s
* logNormal(a, b) x > 0 see below
* chiSquare(n) x > 0 n 2*n
* student(n) all x 0 (n > 1) n/(n - 2) (n > 2)
*
* For the a Lognormal(a, b) random variable, the mean and variance are
*
* mean = exp(a + 0.5*b*b)
* variance = (exp(b*b) - 1) * exp(2*a + b*b)
*
* Name : Rvgs.java (Random Variate GeneratorS)
* Authors : Steve Park & Dave Geyer
* Translated by : Richard Dutton & Jun Wang
* Language : Java
* Latest Revision : 7-1-04
* --------------------------------------------------------------------------
*/
import java.math.*;
import java.io.*;
public class Rvgs{
Rngs rngs;
public Rvgs(){
rngs = new Rngs();
}
public long bernoulli(double p)
/* ========================================================
* Returns 1 with probability p or 0 with probability 1 - p.
* NOTE: use 0.0 < p < 1.0
* ========================================================
*/
{
return ((rngs.random() < (1.0 - p)) ? 0 : 1);
}
public long binomial(long n, double p)
/* ================================================================
* Returns a binomial distributed integer between 0 and n inclusive.
* NOTE: use n > 0 and 0.0 < p < 1.0
* ================================================================
*/
{
long i, x = 0;
for (i = 0; i < n; i++)
x += bernoulli(p);
return (x);
}
public long equilikely(long a, long b)
/* ===================================================================
* Returns an equilikely distributed integer between a and b inclusive.
* NOTE: use a < b
* ===================================================================
*/
{
return (a + (long) ((b - a + 1) * rngs.random()));
}
public long geometric(double p)
/* ====================================================
* Returns a geometric distributed non-negative integer.
* NOTE: use 0.0 < p < 1.0
* ====================================================
*/
{
return ((long) (Math.log(1.0 - rngs.random()) / Math.log(p)));
}
public long pascal(long n, double p)
/* =================================================
* Returns a Pascal distributed non-negative integer.
* NOTE: use n > 0 and 0.0 < p < 1.0
* =================================================
*/
{
long i, x = 0;
for (i = 0; i < n; i++)
x += geometric(p);
return (x);
}
public long poisson(double m)
/* ==================================================
* Returns a Poisson distributed non-negative integer.
* NOTE: use m > 0
* ==================================================
*/
{
double t = 0.0;
long x = 0;
while (t < m) {
t += exponential(1.0);
x++;
}
return (x - 1);
}
public double uniform(double a, double b)
/* ===========================================================
* Returns a uniformly distributed real number between a and b.
* NOTE: use a < b
* ===========================================================
*/
{
return (a + (b - a) * rngs.random());
}
public double exponential(double m)
/* =========================================================
* Returns an exponentially distributed positive real number.
* NOTE: use m > 0.0
* =========================================================
*/
{
return (-m * Math.log(1.0 - rngs.random()));
}
public double erlang(long n, double b)
/* ==================================================
* Returns an Erlang distributed positive real number.
* NOTE: use n > 0 and b > 0.0
* ==================================================
*/
{
long i;
double x = 0.0;
for (i = 0; i < n; i++)
x += exponential(b);
return (x);
}
public double normal(double m, double s)
/* ========================================================================
* Returns a normal (Gaussian) distributed real number.
* NOTE: use s > 0.0
*
* Uses a very accurate approximation of the normal idf due to Odeh & Evans,
* J. Applied Statistics, 1974, vol 23, pp 96-97.
* ========================================================================
*/
{
final double p0 = 0.322232431088; final double q0 = 0.099348462606;
final double p1 = 1.0; final double q1 = 0.588581570495;
final double p2 = 0.342242088547; final double q2 = 0.531103462366;
final double p3 = 0.204231210245e-1; final double q3 = 0.103537752850;
final double p4 = 0.453642210148e-4; final double q4 = 0.385607006340e-2;
double u, t, p, q, z;
u = rngs.random();
if (u < 0.5)
t = Math.sqrt(-2.0 * Math.log(u));
else
t = Math.sqrt(-2.0 * Math.log(1.0 - u));
p = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
q = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));
if (u < 0.5)
z = (p / q) - t;
else
z = t - (p / q);
return (m + s * z);
}
public double logNormal(double a, double b)
/* ====================================================
* Returns a lognormal distributed positive real number.
* NOTE: use b > 0.0
* ====================================================
*/
{
return (Math.exp(a + b * normal(0.0, 1.0)));
}
public double chiSquare(long n)
/* =====================================================
* Returns a chi-square distributed positive real number.
* NOTE: use n > 0
* =====================================================
*/
{
long i;
double z, x = 0.0;
for (i = 0; i < n; i++) {
z = normal(0.0, 1.0);
x += z * z;
}
return (x);
}
public double student(long n)
/* ===========================================
* Returns a student-t distributed real number.
* NOTE: use n > 0
* ===========================================
*/
{
return (normal(0.0, 1.0) / Math.sqrt(chiSquare(n) / n));
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -