📄 intersect_old.m
字号:
function CON = intersect_old(CONfeas,CONadd,clean_up_flag)% Compute the intersection of two linear constraint sets%% Syntax:% "C = intersect(a,b,clean_up_flag)"%% Description:% "intersect(a,b,clean_up_flag)" returns a linearcon object containing% the intersection of "a" and "b". If no intersection exists,% "intersect(a,b,clean_up_flag)" returns an empty linear constraint% object. The value of "clean_up_flag" determines whether or not% redundant constraints are removed from the returned linear constraint% object; "clean_up_flag=1"--remove all redundant constraints,% "clean_up_flag=0"--do nothing.%% Note:% At most one equality constraint is allowed in "a", and if "b" has an% equality constraint, it must be the same as the one present in "a".%% See Also:% linearcon,isfeasible,andglobal GLOBAL_APPROX_PARAMglobal GLOBAL_OPTIM_PARepsilon = GLOBAL_APPROX_PARAM.poly_epsilon;hyperplane_tol = GLOBAL_APPROX_PARAM.poly_hyperplane_tol;CON = linearcon;if isempty(CONfeas) | isempty(CONadd) returnendif (length(CONfeas.dE) > 1) | (length(CONadd.dE) > 1) fprintf('\007intersect: Invalid constraints given, more than 1 equality found\n') returnendif (length(CONfeas.dE) == 0) & (length(CONadd.dE) == 1) fprintf('\007intersect: Invalid constraints given, additional equality constraints\n') returnend% If an equality constraint is found in both sets of constraints,% check if they're the same constraint, if not return an empty% cell arrayif (length(CONfeas.dE) == 1) & (length(CONadd.dE) == 1) MATRIX = [CONfeas.CE CONfeas.dE CONadd.CE CONadd.dE]; if rank(MATRIX,hyperplane_tol) > 1% fprintf('intersect: Patches w/ different eq constraints found\n') return else CONadd.CE = []; CONadd.dE = []; endend % Start with the feasible constraintsCE = CONfeas.CE; dE = CONfeas.dE;CI = CONfeas.CI; dI = CONfeas.dI;% Find out if each new inequality constraint is feasibleCIadd = CONadd.CI; dIadd = CONadd.dI;for k = 1:size(CIadd,1) cIk = CIadd(k,:); dIk = dIadd(k); if is_new_ineq(CONfeas,cIk,dIk) xmin = linprog(cIk',CI,dI,CE,dE,[],[],[],GLOBAL_OPTIM_PAR); % xmin = lp(cIk',[CE; CI],[dE; dI],[],[],[],size(CE,1)); fmin = cIk*xmin; isfeasible = (fmin < dIk-epsilon); if isfeasible CI = [CI; cIk]; dI = [dI; dIk]; else return end endendCON = linearcon(CE,dE,CI,dI);if clean_up_flag CON = clean_up(CON);endreturn% ----------------------------------------------------------------------------function new = is_new_ineq(CONfeas,c,d)% Check if the given constraint cTx <= d% is already in the feasible constraint CONfeasglobal GLOBAL_APPROX_PARAMhyperplane_tol = GLOBAL_APPROX_PARAM.poly_hyperplane_tol;% First search the equality constraintsCE = CONfeas.CE; dE = CONfeas.dE;new = 1;for k = 1:length(dE) MATRIX = [CE(k,:) dE(k); c d]; if (rank(MATRIX,hyperplane_tol) < 2) new = 0; break; endendif new % Now search the inequality constraints CI = CONfeas.CI; dI = CONfeas.dI; for k = 1:length(dI) MATRIX = [CI(k,:) dI(k); c d]; if (rank(MATRIX,hyperplane_tol) < 2) & (CI(k,:)*c' > 0) new = 0; break; end endendreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -