📄 transform.m
字号:
function CON = transform(CON,T,v)% Apply affine transformation Tx + v to a linear constraint object, where% T is an n by n matrix and v is a constant vector%% Syntax:% "C = transform(con,T,v)"%% Description:% "transform(con,T,v)" returns a linear constraint object representing% the constraint set "con" with respect to the transformed variable% "y = Tx + v". %% Examples:% Given the linear constraint object "con" representing a cube with% corners at (x1,x2,x3) triples (2,1,0), (2,1,2), (2,3,0), (2,3,2),% (4,3,0), (4,3,2), (4,1,0), and (4,1,2),%%%% "T = [0.5 0 0;0 0.25 0;0 0 1]; v = [0 0 2]';"%% "C = transform(con,T,v)"%%%% returns "C", a linear constraint object representing the cube with% corners at (x1,x2,x3) triples (1,0.25,2), (1,0.25,4), (1,0.75,2),% (1,0.75,4), (2,0.75,2), (2,0.75,4), (2,0.25,2), and (2,0.25,4).%% See Also:% linearcon,vertices,transform% Test whether T has full rang. In this case we transform the % hyperplanes, otherwise the vertices.if rank(T)==size(T,2) CE = CON.CE; dE = CON.dE; CI = CON.CI; dI = CON.dI; [CE,dE] = transform_hyperplanes(CE,dE,T,v); [CI,dI] = transform_hyperplanes(CI,dI,T,v); CON = linearcon(CE,dE,CI,dI);else vert=vertices(CON); for i=1:length(vert) Tvert(:,i)=T*vert(i)+v; end; CON =linearcon(polyhedron(Tvert));end;returnfunction [C,d] = transform_hyperplanes(C,d,T,v)Ti = inv(T);for k = 1:size(C,1) % update the normal vector and the constant for the % hyperplane representing each face ck = C(k,:)*Ti; dk = d(k) + ck*v; norm_ck = sqrt(ck*ck'); C(k,:) = ck/norm_ck; d(k) = dk/norm_ck;end % for kreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -