⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 deinvmap.m

📁 computation of conformal maps to polygonally bounded regions
💻 M
字号:
function zp = deinvmap(wp,w,beta,z,c,qdat,z0,options)
%DEINVMAP Schwarz-Christoffel exterior inverse map.
%   DEINVMAP(WP,W,BETA,Z,C,TOL) computes the inverse of the
%   Schwarz-Christoffel exterior map (i.e., from the exterior of a
%   polygon to the disk) at the points given in vector WP.  The other
%   arguments are as in DEPARAM.  TOL is a scalar tolerance, or a
%   quadrature-data matrix QDAT as returned by SCQDATA, or may be
%   omitted.
%       
%   The default algorithm is to solve an ODE in order to obtain a fair
%   approximation for ZP, and then improve ZP with Newton iterations.
%   The ODE solution at WP requires a vector Z0 whose forward image W0
%   is such that for each j, the line segment connecting WP(j) and W0(j)
%   lies inside the polygon.  By default Z0 is chosen by a fairly robust
%   automatic process.  Using a parameter (see below), you can choose to
%   use either an ODE solution or Newton iterations exclusively.
%       
%   DEINVMAP(WP,W,BETA,Z,C,TOL,Z0) has two interpretations.  If the ODE
%   solution is being used, Z0 overrides the automatic selection of
%   initial points.  (This can be handy in convex polygons, where the
%   choice of Z0 is trivial.)  Otherwise, Z0 is taken as an initial
%   guess to ZP.  In either case, if length(Z0)==1, the value Z0 is used
%   for all elements of WP; otherwise, length(Z0) should equal
%   length(WP).
%
%   DEINVMAP(WP,W,BETA,Z,C,TOL,Z0,OPTIONS) uses a vector of parameters
%   that control the algorithm.  See SCINVOPT.
%
%   See also SCINVOPT, DEPARAM, DEMAP.

%   Copyright 1998 by Toby Driscoll.
%   $Id: deinvmap.m 279 2007-05-14 20:14:24Z driscoll $

n = length(w);
z = z(:);
beta = beta(:);
zp = zeros(size(wp));
wp = wp(:);
lenwp = length(wp);

if nargin < 8
  options = [];
  if nargin < 7
    z0 = [];
    if nargin < 6
      qdat = [];
    end
  end
end

[ode,newton,tol,maxiter] = scinvopt(options);

if isempty(qdat)
  qdat = tol;
end

if length(qdat)==1
  qdat = scqdata(beta,max(ceil(-log10(qdat)),2));
end

done = zeros(size(wp));
% First, trap all points indistinguishable from vertices, or they will cause
% trouble.
% Modified 05/14/2007 to work around bug in matlab 2007a.
for j=1:n
  idx = find(abs(wp-w(j)) < 3*eps);
  zp(idx) = z(j);
  done(idx) = 1;
end
lenwp = lenwp - sum(done);
if lenwp==0, return, end

% ODE
if ode
  if isempty(z0)
    % Pick a value z0 (not a singularity) and compute the map there.
    [z0,w0] = scimapz0('de',wp(~done),w,beta,z,c,qdat);
  else
    w0 = demap(z0,w,beta,z,c,qdat);
    if length(z0)==1 & lenwp > 1
      z0 = z0(:,ones(lenwp,1)).';
      w0 = w0(:,ones(lenwp,1)).';
    end
    w0 = w0(~done);
    z0 = z0(~done);
  end

  % Use relaxed ODE tol if improving with Newton.
  odetol = max(tol,1e-3*(newton));

  % Rescale dependent coordinate
  scale = (wp(~done) - w0(:));

  % Solve ODE
  z0 = [real(z0);imag(z0)];
  [t,y] = ode23('deimapfun',[0,0.5,1],z0,odeset('abstol',odetol),...
      scale,z,beta,c);
  [m,leny] = size(y);
  zp(~done) = y(m,1:lenwp)+sqrt(-1)*y(m,lenwp+1:leny);
  out = abs(zp) > 1;
  zp(out) = sign(zp(out));
end

% Newton iterations
if newton
  if ~ode
    zn = z0(:);
    if length(z0)==1 & lenwp > 1
      zn = zn(:,ones(lenwp,1));
    end
    zn(done) = zp(done); 
  else
    zn = zp(:);
  end
    
  wp = wp(:);
  k = 0;
  while ~all(done) & k < maxiter
    F = wp(~done) - demap(zn(~done),w,beta,z,c,qdat);
    m = length(F);
    dF = c*(zn(~done).').^(-2) .* exp(sum(beta(:,ones(m,1)) .* ...
      log(1-(zn(~done,ones(n,1)).')./z(:,ones(m,1)))));
    zn(~done) = zn(~done) + F(:)./dF(:);
    done(~done) = (abs(F)< tol);
    k = k+1;
  end
  if any(abs(F)> tol)
    str = sprintf('Check solution; maximum residual = %.3g\n',max(abs(F)));
    warning(str)
  end
  zp(:) = zn; 
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -