📄 rsquad.m
字号:
function I = rsquad(z1,z2,varargin)
%RSQUAD (not intended for calling directly by the user)
% Numerical quadrature for the Riemann surface map.
% Copyright 2002 by Toby Driscoll.
% $Id: rsquad.m 212 2002-09-25 17:31:37Z driscoll $
% RSQUAD(z1,z2,sing1,z,beta,zb,qdat)
%
% z1,z2 are vectors of left and right endpoints. sing1 is a vector of
% integer indices which label the singularities in z1. So if sing1(5)
% = 3, then z1(5) = z(3). A zero means no singularity. z is the
% vector of singularities; beta is the vector of associated turning
% angles. qdat is quadrature data from SCQDATA.
%
% Make sure that z and beta are column vectors.
%
% The integral is subdivided, if necessary, so that no singularity
% lies closer to the left endpoint than 1/2 the length of the
% integration (sub)interval.
%
% RSQUAD(z1,z2,sing1,sing2,z,beta,zb,qdat)
%
% Integrate from one singularity to another. Picks the origin as the
% midpoint of integration; this may NOT be wise if the path goes near a
% branch point.
if nargin==8
% Break into two pieces with recursive call.
[sing1,sing2,z,beta,zb,qdat] = deal(varargin{:});
mid = zeros(size(z1));
I1 = rsquad(z1,mid,sing1,z,beta,zb,qdat);
I2 = rsquad(z2,mid,sing2,z,beta,zb,qdat);
I = I1-I2;
return
else
[sing1,z,beta,zb,qdat] = deal(varargin{:});
end
nqpts = size(qdat,1);
n = length(z);
bigz = z(:,ones(1,nqpts));
bigbeta = beta(:,ones(1,nqpts));
if isempty(sing1)
sing1 = zeros(length(z1),1);
end
B = length(zb);
if B>0
bigbranch = zb(:,ones(1,nqpts));
else
bigbranch = zeros(1,nqpts);
end
I = zeros(size(z1));
nontriv = find(z1(:)~=z2(:))';
for k = nontriv
za = z1(k);
zb = z2(k);
sng = sing1(k);
% Allowable integration step, based on nearest singularity.
dist = min(1,2*min(abs(z([1:sng-1,sng+1:n])-za))/abs(zb-za));
zr = za + dist*(zb-za);
% Adjust Gauss-Jacobi nodes and weights to interval.
ind = rem(sng+n,n+1)+1;
nd = ((zr-za)*qdat(:,ind) + zr + za).'/2; % G-J nodes
wt = ((zr-za)/2) * qdat(:,ind+n+1); % G-J weights
terms = 1 - (nd(ones(n,1),:))./bigz;
if any(terms(:)==0)
% Endpoints are practically coincident.
I(k) = 0;
else
% Use Gauss-Jacobi on first subinterval, if necessary.
if sng > 0
terms(sng,:) = terms(sng,:)./abs(terms(sng,:));
wt = wt*(abs(zr-za)/2)^beta(sng);
end
Q = exp(sum(log(terms).*bigbeta));
if B > 0
ND = nd(ones(B,1),:);
Q = Q.*prod((ND-bigbranch).*(1-ND.*conj(bigbranch)),1);
end
I(k) = Q*wt;
while dist < 1
% Do regular Gaussian quad on other subintervals.
zl = zr;
dist = min(1,2*min(abs(z-zl))/abs(zl-zb));
zr = zl + dist*(zb-zl);
nd = ((zr-zl)*qdat(:,n+1) + zr + zl).'/2;
wt = ((zr-zl)/2) * qdat(:,2*n+2);
Q = exp(sum(log(1 - nd(ones(n,1),:)./bigz).*bigbeta));
if B > 0
ND = nd(ones(B,1),:);
Q = Q.*prod((ND-bigbranch).*(1-ND.*conj(bigbranch)),1);
end
I(k) = I(k) + Q*wt;
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -