📄 moebius.m
字号:
function map = moebius(varargin)
%MOEBIUS Moebius transformation.
% MOEBIUS(Z,W) creates the Moebius transformation the maps the
% 3-vector Z to W. Infinity is allowed in Z and W.
%
% MOEBIUS(C1,C2,C3,C4) creates the transformation
%
% C1 + C2*z
% ---------
% C3 + C4*z
%
% MOEBIUS([C1 C2 C3 C4]) also works.
% Copyright (c) 1998 by Toby Driscoll.
% $Id: moebius.m 44 1998-07-01 20:21:54Z tad $
superiorto('double');
A = NaN*ones(1,4);
switch nargin
case {0}
map.source = [];
map.image = [];
map.coeff = [];
case {1}
C = varargin{1};
if isa(C,'double') & length(C)==4
map.source = [];
map.image = [];
map.coeff = C(:).';
elseif isa(C,'moebius')
map = C;
return
end
case {4}
map.source = [];
map.image = [];
map.coeff = cat(2,varargin{1:4});
case {2}
[z,w] = deal(varargin{1:2});
% Pretty straightforward, but the infinities require care.
if any(isinf(w))
% Renumber to make w(2)=Inf
j = find(isinf(w));
renum = rem((j-1:j+1)+2,3)+1;
z = z(renum);
w = w(renum);
% Depend on infinities in z
if ~any(isinf(z))
t1 = diff(z(1:2));
t2 = -diff(z(2:3));
elseif isinf(z(2))
t1 = 1;
t2 = 1;
else
if find(isinf(z))~=1
% Move Inf to the beginning of z
z = z([3 2 1]);
w = w([3 2 1]);
end
A(1) = w(3)*(z(3)-z(2)) - w(1)*z(3);
A(2) = w(1);
A(3) = -z(2);
A(4) = 1;
end
elseif any(isinf(z))
% We already know all w are finite
% Make z(2)=Inf
j = find(isinf(z));
renum = rem((j-1:j+1)+2,3)+1;
z = z(renum);
w = w(renum);
t1 = -diff(w(2:3));
t2 = diff(w(1:2));
else % everything finite
t1 = -diff(z(1:2))*diff(w(2:3));
t2 = -diff(z(2:3))*diff(w(1:2));
end
if isnan(A(1))
% Did not encounter the special case above
A(1) = w(3)*z(1)*t2 - w(1)*z(3)*t1;
A(2) = w(1)*t1 - w(3)*t2;
A(3) = z(1)*t2 - z(3)*t1;
A(4) = t1 - t2;
end
map.source = z;
map.image = w;
map.coeff = A;
end
map = class(map,'moebius');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -