📄 rderiv.m
字号:
function fprime = rderiv(zp,z,beta,c,L,zs)
%RDERIV Derivative of the rectangle map.
% RDERIV(ZP,Z,BETA,C,L) returns the derivative at the points of ZP of
% the Schwarz-Christoffel rectangle map defined by Z, BETA, C, and L.
%
% If a sixth argument is supplied, it is assumed to be the image of Z
% on the intermediate strip; see R2STRIP.
%
% See also RPARAM, RMAP, R2STRIP.
% Copyright 1998 by Toby Driscoll.
% $Id: rderiv.m 9 1998-05-10 04:55:10Z tad $
n = length(z);
if nargin < 6
% Find prevertices on the strip
zs = r2strip(z,z,L);
zs = real(zs) + i*round(imag(zs)); % put them *exactly* on edges
end
% First compute map and derivative from rectangle to strip
[F,dF] = r2strip(zp,z,L);
% Now compute derivative of map from strip to polygon
% Add in ends of strip
ends = find(diff(imag(z([1:n 1]))));
zs = [zs(1:ends(1));Inf;zs(ends(1)+1:ends(2));-Inf;zs(ends(2)+1:n)];
bs = [beta(1:ends(1));0;beta(ends(1)+1:ends(2));0;beta(ends(2)+1:n)];
dG = stderiv(F,zs,bs);
% Put it together
fprime = c*dF.*dG;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -