⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalmanslam.hpp

📁 Bayesian Filtering Classe C++source
💻 HPP
字号:
/* * Bayes++ the Bayesian Filtering Library * Copyright (c) 2004 Michael Stevens * See accompanying Bayes++.htm for terms and conditions of use. * * $Id: kalmanSLAM.hpp 564 2006-04-05 20:51:38 +0200 (Wed, 05 Apr 2006) mistevens $ *//* * SLAM : Simultaneous Locatization and Mapping *  Kalman filter representing representation of SLAM *  A very simple full filter implementation. *  The Feature number should be incremented by one to avoid sparseness in the full filter. *  The filter size grows with the feature number, but never shrinks * * Reference *  [1] "A Solution to the Simultaneous Localization and Map Building (SLAM) Problem" *   MWM Gamini Dissanayake, Paul Newman, Steven Clark, Hugh Durrant-Wyte, M Csorba, IEEE T Robotics and Automation vol.17 no.3 June 2001 */namespace SLAM_filter{class Kalman_filter_generator{public:	typedef Bayesian_filter::Linrz_kalman_filter Filter_type;	virtual Filter_type* generate( unsigned full_size ) = 0;	virtual void dispose( Filter_type* filter ) = 0;	virtual ~Kalman_filter_generator()	{}};class Kalman_SLAM : public SLAM{public:	Kalman_SLAM( Kalman_filter_generator& filter_generator );	~Kalman_SLAM();	void init_kalman( const FM::Vec& x, const FM::SymMatrix& X );	void predict( Bayesian_filter::Linrz_predict_model& m );	void observe( unsigned feature, const Feature_observe& fom, const FM::Vec& z );	void observe_new( unsigned feature, const Feature_observe_inverse& fom, const FM::Vec& z );	void observe_new( unsigned feature, const FM::Float& t, const FM::Float& T );	void forget( unsigned feature, bool must_exist = true );	void update()	// Compute sample mean and covariance statistics of filter	{		full->update();	}	void statistics_sparse( BF::Kalman_state_filter& kstats ) const	{		kstats = *full;	}		void decorrelate( Bayesian_filter::Bayes_base::Float d);protected:	Kalman_filter_generator& fgenerator;	// Location filter for prediction	Kalman_filter_generator::Filter_type* loc;	// Full Kalman representation of state	Kalman_filter_generator::Filter_type* full;private:	unsigned nL;		// No of location states	unsigned nM;		// No of map states};}//namespace SLAM

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -