📄 etf_smooth1.m
字号:
%ETF_SMOOTH1 Smoother based on two extended Kalman filters%% Syntax:% [M,P] = ETF_SMOOTH1(M,P,Y,A,Q,ia,W,aparam,H,R,h,V,hparam,same_p_a,same_p_h)%% In:% M - NxK matrix of K mean estimates from Kalman filter% P - NxNxK matrix of K state covariances from Kalman Filter% Y - Measurement vector% A - Derivative of a() with respect to state as% matrix, inline function, function handle or% name of function in form A(x,param) (optional, default eye())% Q - Process noise of discrete model (optional, default zero)% ia - Inverse prediction function as vector,% inline function, function handle or name% of function in form ia(x,param) (optional, default inv(A(x))*X)% W - Derivative of a() with respect to noise q% as matrix, inline function, function handle% or name of function in form W(x,param) (optional, default identity)% aparam - Parameters of a. Parameters should be a single cell array, vector or a matrix% containing the same parameters for each step or if different parameters% are used on each step they must be a cell array of the format% { param_1, param_2, ...}, where param_x contains the parameters for% step x as a cell array, a vector or a matrix. (optional, default empty)% H - Derivative of h() with respect to state as matrix,% inline function, function handle or name% of function in form H(x,param)% R - Measurement noise covariance.% h - Mean prediction (measurement model) as vector,% inline function, function handle or name% of function in form h(x,param). (optional, default H(x)*X)% V - Derivative of h() with respect to noise as matrix,% inline function, function handle or name% of function in form V(x,param). (optional, default identity)% hparam - Parameters of h. See the description of aparam for the format of% parameters. (optional, default aparam)% same_p_a - If 1 uses the same parameters % on every time step for a (optional, default 1) % same_p_h - If 1 uses the same parameters % on every time step for h (optional, default 1) %% Out:% M - Smoothed state mean sequence% P - Smoothed state covariance sequence% % Description:% Two filter nonlinear smoother algorithm. Calculate "smoothed"% sequence from given extended Kalman filter output sequence% by conditioning all steps to all measurements.%% Example:% [...]%% See also:% ERTS_SMOOTH1, EKF_PREDICT1, EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2% History:% 02.08.2007 JH Changed the name to etf_smooth1% 04.05.2007 JH Added the possibility to pass different parameters for a and h% for each step.% 2006 SS Initial version. %% Copyright (C) 2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -