📄 utf_smooth1.m
字号:
%UTF_SMOOTH1 Smoother based on two unscented Kalman filters%% Syntax:% [M,P] = UTF_SMOOTH1(M,P,Y,[ia,Q,aparam,h,R,hparam,,alpha,beta,kappa,mat,same_p_a,same_p_h])%% In:% M - NxK matrix of K mean estimates from Kalman filter% P - NxNxK matrix of K state covariances from Kalman Filter% Y - Measurement vector% ia - Inverse prediction as a matrix IA defining% linear function ia(xw) = IA*xw, inline function,% function handle or name of function in% form ia(xw,param) (optional, default eye())% Q - Process noise of discrete model (optional, default zero)% aparam - Parameters of a (optional, default empty)% h - Measurement model function as a matrix H defining% linear function h(x) = H*x, inline function,% function handle or name of function in% form h(x,param)% R - Measurement noise covariance.% hparam - Parameters of h (optional, default aparam)% alpha - Transformation parameter (optional)% beta - Transformation parameter (optional)% kappa - Transformation parameter (optional)% mat - If 1 uses matrix form (optional, default 0)% same_p_a - If 1 uses the same parameters % on every time step for a (optional, default 1)% same_p_h - If 1 uses the same parameters % on every time step for h (optional, default 1) %% Out:% M - Smoothed state mean sequence% P - Smoothed state covariance sequence% % Description:% Two filter nonlinear smoother algorithm. Calculate "smoothed"% sequence from given extended Kalman filter output sequence% by conditioning all steps to all measurements.%% Example:% [...]%% See also:% UKF_PREDICT1, UKF_UPDATE1% History:% 02.08.2007 JH Changed the name to utf_smooth1% 04.05.2007 JH Added the possibility to pass different parameters for a and h% for each step.% 2006 SS Initial version. % Copyright (C) 2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -