📄 maximize_params.m
字号:
function CPD = maximize_params(CPD)% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian)% CPD = maximize_params(CPD)% For details, see "Fitting a Conditional Gaussian Distribution", Kevin Murphy, tech. report,% 1998, available at www.cs.berkeley.edu/~murphyk/publ.html% Refering to table 2, we use equations 1/2 to estimate the covariance matrix in the untied/tied case,% and equation 9 to estimate the weight matrix and mean.% We do not implement spherical Gaussians - the code is already pretty complicated!if ~adjustable_CPD(CPD), return; end%assert(approxeq(CPD.nsamples, sum(CPD.Wsum)));[self_size cpsize dpsize] = size(CPD.weights);check_real = 1;if check_real % Sometimes, with limited data, we can get imaginary components! % These are basically harmless, but ugly. if ~isreal(CPD.WXYsum) | ~isreal(CPD.WXXsum) | ~isreal(CPD.WYYsum) disp(['removing imaginary components for CPD ' num2str(CPD.self)]); CPD.WXYsum = real(CPD.WXYsum); CPD.WXXsum = real(CPD.WXXsum); CPD.WYYsum = real(CPD.WYYsum); endend% Estimate mean and weights simultaneously% Let x2 = [x 1]' and B2 = [B mu]XY = zeros(cpsize+1, self_size, dpsize); % XY(:,:,i) = sum_l w(l,i) x2(l) y(l)' XX = zeros(cpsize+1, cpsize+1, dpsize); % XX(:,:,i) = sum_l w(l,i) x2(l) x2(l)' YY = zeros(self_size, self_size, dpsize); % YY(:,:,i) = sum_l w(l,i) y(l) y(l)' for i=1:dpsize XY(:,:,i) = [CPD.WXYsum(:,:,i) % X*Y CPD.WYsum(:,i)']; % 1*Y % [x * [x' 1] = [xx' x % 1] x' 1] XX(:,:,i) = [CPD.WXXsum(:,:,i) CPD.WXsum(:,i); CPD.WXsum(:,i)' CPD.Wsum(i)]; YY(:,:,i) = CPD.WYYsum(:,:,i);endclamped_zero_mean = CPD.clamped_mean & isequal(CPD.mean, zeros(self_size, 1, dpsize));if ~clamped_zero_mean B2 = zeros(self_size, cpsize+1, dpsize); for i=1:dpsize if det(XX(:,:,i))==0 % fix by U. Sondhauss 6/27/99 B2(:,:,i)=0; else % Eqn 9 in table 2 of TR %B2(:,:,i) = XY(:,:,i)' * inv(XX(:,:,i)); B2(:,:,i) = (XX(:,:,i) \ XY(:,:,i))'; end if ~CPD.clamped_mean CPD.mean(:,i) = B2(:,cpsize+1,i); end if ~CPD.clamped_weights CPD.weights(:,:,i) = B2(:,1:cpsize,i); end endelse % Estimating B2 and then setting the last column (the mean) to 0s is *not* equivalent % to estimating B and then adding 0s to the last column. if ~CPD.clamped_weights B = zeros(self_size, cpsize, dpsize); for i=1:dpsize if det(CPD.WXXsum(:,:,i))==0 B(:,:,i) = 0; else % Eqn 9 in table 2 of TR %B(:,:,i) = CPD.WXYsum(:,:,i)' * inv(CPD.WXXsum(:,:,i)); B(:,:,i) = (CPD.WXXsum(:,:,i) \ CPD.WXYsum(:,:,i))'; end end CPD.weights = reshape(B, [self_size cpsize dpsize]); endend% Let B2 = [W mu]if dpsize == 1 % bug fix due to Rainer Deventer if cpsize>0 B2(:,1:cpsize) = reshape(CPD.weights, [self_size cpsize]); end B2(:,cpsize+1) = CPD.mean;else if cpsize>0 B2(:,1:cpsize,:) = reshape(CPD.weights, [self_size cpsize dpsize]); end B2(:,cpsize+1,:) = reshape(CPD.mean, [self_size dpsize]);endif ~CPD.clamped_cov if CPD.tied_cov S = zeros(self_size, self_size); % Eqn 2 from table 2 in TR for i=1:dpsize S = S + (YY(:,:,i) - B2(:,:,i)*XY(:,:,i)); end S = S / CPD.nsamples; if strcmp(CPD.cov_type, 'diag') S = diag(diag(S)); end CPD.cov = repmat(S, [1 1 dpsize]); else w = CPD.Wsum(:); % Set any zeros to one before dividing % This is valid because w(i)=0 iff WYsum(:,i)=0, etc. w = w + (w==0); for i=1:dpsize % Eqn 1 from table 2 in TR CPD.cov(:,:,i) = (YY(:,:,i) - B2(:,:,i)*XY(:,:,i))/w(i); end if strcmp(CPD.cov_type, 'diag') for i=1:dpsize CPD.cov(:,:,i) = diag(diag(CPD.cov(:,:,i))); end end endendcheck_covars = 1;min_covar = 1e-5;if check_covars % prevent collapsing to a point for i=1:dpsize if min(svd(CPD.cov(:,:,i))) < min_covar disp(['resetting singular covariance for node ' num2str(CPD.self)]); CPD.cov(:,:,i) = CPD.init_cov(:,:,i); end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -