⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oil1_chance.m

📁 Bayesian网络工具箱.
💻 M
字号:
% oil wildcatter influence diagram in Cowell et al p172T = 1; UT = 2; O = 3; R = 4; D = 5; UD = 6;N = 6;dag = zeros(N);dag(T, [UT R D]) = 1;dag(O, [R UD]) = 1;dag(R, D) = 1;dag(D, UD) = 1;ns = zeros(1,N);ns(O) = 3; ns(R) = 4; ns(T) = 2; ns(D) = 2; ns(UT) = 1; ns(UD) = 1;limid = mk_limid(dag, ns, 'chance', [O R], 'decision', [T D], 'utility', [UT UD]);limid.CPD{O} = tabular_chance_node(ns(O), [0.5 0.3 0.2]);tbl = [0.6 0 0.3 0 0.1 0  0.3 0 0.4 0 0.4 0  0.1 0 0.3 0 0.5 0  0 1 0 1 0 1];limid.CPD{R} = tabular_chance_node(ns([T O R]), tbl);limid.CPD{UT} = tabular_utility_node(ns(T), [-10 0]);limid.CPD{UD} = tabular_utility_node(ns([O D]), [-70 50 200  0 0 0]);if 1  % start with uniform policies  limid.CPD{T} = tabular_decision_node(ns(T));  limid.CPD{D} = tabular_decision_node(ns([T R D]));else  % hard code optimal policies  limid.CPD{T} = tabular_decision_node(ns(T), [1.0 0.0]);          a = 0.5; b = 1-a; % arbitrary value  tbl = myreshape([0 a 1 a 1 a a a  1 b 0 b 0 b b b], ns([T R D]));  limid.CPD{D} = tabular_decision_node(ns([T R D]), tbl);end%[strategy, MEU] = solve_limid_naive(limid);clear engines;engines{1} = naive_meu_engine(limid);engines{2} = jtree_meu_engine(limid);for e=1:length(engines)  [strategy, MEU] = solve_limid(engines{e});    assert(approxeq(MEU, 22.5))  assert(argmax(strategy{T} == 1)); % test = yes  t = 1; % test = yes  for r=[2 3] % OpS, ClS    assert(argmax(squeeze(strategy{D}(t,r,:))) == 1); % drill = yes  end  r = 1; % noS  assert(argmax(squeeze(strategy{D}(t,r,:))) == 2); % drill = noend 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -