📄 mk_ideker_bnet.m
字号:
function bnet = mk_ideker_bnet(CPD_type, p)% MK_IDEKER_BNET Make the Bayes net in the PSB'00 paper by Ideker, Thorsson and Karp.%% BNET = MK_IDEKER_BNET uses the boolean functions specified in the paper % "Discovery of regulatory interactions through perturbation: inference and experimental design",% Pacific Symp. on Biocomputing, 2000.% % BNET = MK_IDEKER_BNET('root') uses the above boolean functions, but puts a uniform% distribution on the root nodes.%% BNET = MK_IDEKER_BNET('cpt', p) uses random parameters drawn from a Dirichlet(p,p,...)% distribution. If p << 1, this is nearly deterministic; if p >> 1, this is nearly uniform.% % BNET = MK_IDEKER_BNET('bool') makes each CPT a random boolean function.%% BNET = MK_IDEKER_BNET('orig') is the same as MK_IDEKER_BNET.if nargin == 0 CPD_type = 'orig';endn = 4;dag = zeros(n);dag(1,3)=1;dag(2,[3 4])=1;dag(3,4)=1;ns = 2*ones(1,n);bnet = mk_bnet(dag, ns);switch CPD_type case 'orig', bnet.CPD{1} = tabular_CPD(bnet, 1, [0 1]); bnet.CPD{2} = tabular_CPD(bnet, 2, [0 1]); bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)')); bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'root', bnet.CPD{1} = tabular_CPD(bnet, 1, [0.5 0.5]); bnet.CPD{2} = tabular_CPD(bnet, 2, [0.5 0.5]); bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)')); bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'bool', for i=1:n bnet.CPD{i} = boolean_CPD(bnet, i, 'rnd'); end case 'cpt', for i=1:n bnet.CPD{i} = tabular_CPD(bnet, i, p); end otherwise, error(['unknown type ' CPD_type]);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -