⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mk_ideker_bnet.m

📁 Bayesian网络工具箱.
💻 M
字号:
function bnet = mk_ideker_bnet(CPD_type, p)% MK_IDEKER_BNET Make the Bayes net in the PSB'00 paper by Ideker, Thorsson and Karp.%% BNET = MK_IDEKER_BNET uses the boolean functions specified in the paper % "Discovery of regulatory interactions through perturbation: inference and experimental design",% Pacific Symp. on Biocomputing, 2000.% % BNET = MK_IDEKER_BNET('root') uses the above boolean functions, but puts a uniform% distribution on the root nodes.%% BNET = MK_IDEKER_BNET('cpt', p) uses random parameters drawn from a Dirichlet(p,p,...)% distribution. If p << 1, this is nearly deterministic; if p >> 1, this is nearly uniform.% % BNET = MK_IDEKER_BNET('bool') makes each CPT a random boolean function.%% BNET = MK_IDEKER_BNET('orig') is the same as MK_IDEKER_BNET.if nargin == 0  CPD_type = 'orig';endn = 4;dag = zeros(n);dag(1,3)=1;dag(2,[3 4])=1;dag(3,4)=1;ns = 2*ones(1,n);bnet = mk_bnet(dag, ns);switch CPD_type case 'orig',  bnet.CPD{1} = tabular_CPD(bnet, 1, [0 1]);  bnet.CPD{2} = tabular_CPD(bnet, 2, [0 1]);  bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)'));  bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'root',  bnet.CPD{1} = tabular_CPD(bnet, 1, [0.5 0.5]);  bnet.CPD{2} = tabular_CPD(bnet, 2, [0.5 0.5]);  bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)'));  bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'bool',  for i=1:n    bnet.CPD{i} = boolean_CPD(bnet, i, 'rnd');  end case 'cpt',  for i=1:n    bnet.CPD{i} = tabular_CPD(bnet, i, p);  end otherwise,  error(['unknown type ' CPD_type]);end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -