⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vectorfunctions.h

📁 关于矩阵运算的很强的一个工具包
💻 H
📖 第 1 页 / 共 2 页
字号:
TVMET_IMPLEMENT_MACRO(mul, int)TVMET_IMPLEMENT_MACRO(div, int)#if defined(TVMET_HAVE_LONG_LONG)TVMET_IMPLEMENT_MACRO(add, long long int)TVMET_IMPLEMENT_MACRO(sub, long long int)TVMET_IMPLEMENT_MACRO(mul, long long int)TVMET_IMPLEMENT_MACRO(div, long long int)#endifTVMET_IMPLEMENT_MACRO(add, float)TVMET_IMPLEMENT_MACRO(sub, float)TVMET_IMPLEMENT_MACRO(mul, float)TVMET_IMPLEMENT_MACRO(div, float)TVMET_IMPLEMENT_MACRO(add, double)TVMET_IMPLEMENT_MACRO(sub, double)TVMET_IMPLEMENT_MACRO(mul, double)TVMET_IMPLEMENT_MACRO(div, double)#if defined(TVMET_HAVE_LONG_DOUBLE)TVMET_IMPLEMENT_MACRO(add, long double)TVMET_IMPLEMENT_MACRO(sub, long double)TVMET_IMPLEMENT_MACRO(mul, long double)TVMET_IMPLEMENT_MACRO(div, long double)#endif#undef TVMET_IMPLEMENT_MACRO#if defined(TVMET_HAVE_COMPLEX)/* * function(XprMatrix<E, Rows, Cols>, complex<T>) * function(complex<T>, XprMatrix<E, Rows, Cols>) * Note: - operations +,-,*,/ are per se element wise * \todo type promotion */#define TVMET_IMPLEMENT_MACRO(NAME)				   \template<class E, std::size_t Sz, class T>				\inline									\XprVector<								\  XprBinOp<								\    Fcnl_##NAME< typename E::value_type, std::complex<T> >,		\    XprVector<E, Sz>,							\    XprLiteral< std::complex<T> >					\  >,									\  Sz									\>									\NAME (const XprVector<E, Sz>& lhs, const std::complex<T>& rhs) {	\  typedef XprBinOp<							\    Fcnl_##NAME< typename E::value_type, std::complex<T> >,		\    XprVector<E, Sz>,							\    XprLiteral< std::complex<T> >					\  >							expr_type;	\  return XprVector<expr_type, Sz>(					\    expr_type(lhs, XprLiteral< std::complex<T> >(rhs)));		\}									\									\template<class E, std::size_t Sz, class T>				\inline									\XprVector<								\  XprBinOp<								\    Fcnl_##NAME< std::complex<T>, typename E::value_type>,		\    XprLiteral< std::complex<T> >,					\    XprVector<E, Sz>							\  >,									\  Sz									\>									\NAME (const std::complex<T>& lhs, const XprVector<E, Sz>& rhs) {	\  typedef XprBinOp<							\    Fcnl_##NAME< std::complex<T>, typename E::value_type>,		\    XprLiteral< std::complex<T> >,					\    XprVector<E, Sz>							\  >							expr_type;	\  return XprVector<expr_type, Sz>(					\    expr_type(XprLiteral< std::complex<T> >(lhs), rhs));		\}TVMET_IMPLEMENT_MACRO(add)TVMET_IMPLEMENT_MACRO(sub)TVMET_IMPLEMENT_MACRO(mul)TVMET_IMPLEMENT_MACRO(div)#undef TVMET_IMPLEMENT_MACRO#endif // defined(TVMET_HAVE_COMPLEX)/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * vector specific functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*//** * \fn sum(const XprVector<E, Sz>& v) * \brief Compute the sum of the vector expression. * \ingroup _unary_function * * Simply compute the sum of the given vector as: * \f[ * \sum_{i = 0}^{Sz-1} v[i] * \f] */template<class E, std::size_t Sz>inlinetypename NumericTraits<typename E::value_type>::sum_typesum(const XprVector<E, Sz>& v) {  return meta::Vector<Sz>::sum(v);}/** * \fn product(const XprVector<E, Sz>& v) * \brief Compute the product of the vector elements. * \ingroup _unary_function * * Simply computer the product of the given vector expression as: * \f[ * \prod_{i = 0}^{Sz - 1} v[i] * \f] */template<class E, std::size_t Sz>inlinetypename NumericTraits<typename E::value_type>::sum_typeproduct(const XprVector<E, Sz>& v) {  return meta::Vector<Sz>::product(v);}/** * \fn dot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) * \brief Compute the dot/inner product * \ingroup _binary_function * * Compute the dot product as: * \f[ * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] ) * \f] * where lhs is a column vector and rhs is a row vector, both vectors * have the same dimension. */template<class E1, class E2, std::size_t Sz>inlinetypename PromoteTraits<  typename E1::value_type,  typename E2::value_type>::value_typedot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) {  return meta::Vector<Sz>::dot(lhs, rhs);}/** * \fn dot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) * \brief Compute the dot/inner product * \ingroup _binary_function * * Compute the dot product as: * \f[ * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] ) * \f] * where lhs is a column vector and rhs is a row vector, both vectors * have the same dimension. */template<class T, class E, std::size_t Sz>inlinetypename PromoteTraits<T, typename E::value_type>::value_typedot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) {  return meta::Vector<Sz>::dot(lhs, rhs);}/** * \fn dot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) * \brief Compute the dot/inner product * \ingroup _binary_function * * Compute the dot product as: * \f[ * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] ) * \f] * where lhs is a column vector and rhs is a row vector, both vectors * have the same dimension. */template<class E, class T, std::size_t Sz>inlinetypename PromoteTraits<T, typename E::value_type>::value_typedot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) {  return meta::Vector<Sz>::dot(lhs, rhs);}/** * \fn cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs) * \brief Compute the cross/outer product * \ingroup _binary_function * \note working only for vectors of size = 3 * \todo Implement vector outer product as ET and MT, returning a XprVector */template<class E1, class E2>inlineVector<  typename PromoteTraits<    typename E1::value_type,    typename E2::value_type  >::value_type,  3>cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs) {  typedef typename PromoteTraits<    typename E1::value_type,    typename E2::value_type  >::value_type						value_type;  return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),			       rhs(0)*lhs(2) - lhs(0)*rhs(2),			       lhs(0)*rhs(1) - rhs(0)*lhs(1));}/** * \fn cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs) * \brief Compute the cross/outer product * \ingroup _binary_function * \note working only for vectors of size = 3 * \todo Implement vector outer product as ET and MT, returning a XprVector */template<class E, class T>inlineVector<  typename PromoteTraits<T, typename E::value_type>::value_type, 3>cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs) {  typedef typename PromoteTraits<    typename E::value_type, T>::value_type 		value_type;  return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),			       rhs(0)*lhs(2) - lhs(0)*rhs(2),			       lhs(0)*rhs(1) - rhs(0)*lhs(1));}/** * \fn cross(const Vector<T, 3>& lhs, const XprVector<E, 3>& rhs) * \brief Compute the cross/outer product * \ingroup _binary_function * \note working only for vectors of size = 3 * \todo Implement vector outer product as ET and MT, returning a XprVector */template<class T1, class E2>inlineVector<  typename PromoteTraits<T1, typename E2::value_type>::value_type, 3>cross(const Vector<T1, 3>& lhs, const XprVector<E2, 3>& rhs) {  typedef typename PromoteTraits<    typename E2::value_type, T1>::value_type 		value_type;  return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),			       rhs(0)*lhs(2) - lhs(0)*rhs(2),			       lhs(0)*rhs(1) - rhs(0)*lhs(1));}/** * \fn norm1(const XprVector<E, Sz>& v) * \brief The \f$l_1\f$ norm of a vector expression. * \ingroup _unary_function * The norm of any vector is just the square root of the dot product of * a vector with itself, or * * \f[ * |Vector<T, Sz> v| = |v| = \sum_{i=0}^{Sz-1}\,|v[i]| * \f] */template<class E, std::size_t Sz>inlinetypename NumericTraits<typename E::value_type>::sum_typenorm1(const XprVector<E, Sz>& v) {  return sum(abs(v));}/** * \fn norm2(const XprVector<E, Sz>& v) * \brief The euklidian norm (or \f$l_2\f$ norm) of a vector expression. * \ingroup _unary_function * The norm of any vector is just the square root of the dot product of * a vector with itself, or * * \f[ * |Vector<T, Sz> v| = |v| = \sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 } * \f] * * \note The internal cast for Vector<int> avoids warnings on sqrt. */template<class E, std::size_t Sz>inlinetypename NumericTraits<typename E::value_type>::sum_typenorm2(const XprVector<E, Sz>& v) {  typedef typename E::value_type			value_type;  return static_cast<value_type>( std::sqrt(static_cast<value_type>(dot(v, v))) );}/** * \fn normalize(const XprVector<E, Sz>& v) * \brief Normalize the given vector expression. * \ingroup _unary_function * \sa norm2 * * using the equation: * \f[ * \frac{Vector<T, Sz> v}{\sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }} * \f] */template<class E, std::size_t Sz>inlineXprVector<  XprBinOp<    Fcnl_div<typename E::value_type, typename E::value_type>,    XprVector<E, Sz>,    XprLiteral<typename E::value_type>  >,  Sz>normalize(const XprVector<E, Sz>& v) {  typedef typename E::value_type			value_type;  typedef XprBinOp<    Fcnl_div<value_type, value_type>,    XprVector<E, Sz>,    XprLiteral<value_type>  >							expr_type;  return XprVector<expr_type, Sz>(    expr_type(v, XprLiteral< value_type >(norm2(v))));}} // namespace tvmet#endif // TVMET_XPR_VECTOR_FUNCTIONS_H// Local Variables:// mode:C++// tab-width:8// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -