⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrixfunctions.h

📁 关于矩阵运算的很强的一个工具包
💻 H
📖 第 1 页 / 共 2 页
字号:
  XprBinOp<								\    Fcnl_##NAME< POD, typename E::value_type>,				\    XprLiteral< POD >,							\    XprMatrix<E, Rows, Cols>						\  >,									\  Rows, Cols								\>									\NAME (POD lhs, const XprMatrix<E, Rows, Cols>& rhs) {			\  typedef XprBinOp<							\    Fcnl_##NAME< POD, typename E::value_type>,				\    XprLiteral< POD >,							\    XprMatrix<E, Rows, Cols>						\  >							expr_type;	\  return XprMatrix<expr_type, Rows, Cols>(				\    expr_type(XprLiteral< POD >(lhs), rhs));				\}TVMET_IMPLEMENT_MACRO(add, int)TVMET_IMPLEMENT_MACRO(sub, int)TVMET_IMPLEMENT_MACRO(mul, int)TVMET_IMPLEMENT_MACRO(div, int)#if defined(TVMET_HAVE_LONG_LONG)TVMET_IMPLEMENT_MACRO(add, long long int)TVMET_IMPLEMENT_MACRO(sub, long long int)TVMET_IMPLEMENT_MACRO(mul, long long int)TVMET_IMPLEMENT_MACRO(div, long long int)#endifTVMET_IMPLEMENT_MACRO(add, float)TVMET_IMPLEMENT_MACRO(sub, float)TVMET_IMPLEMENT_MACRO(mul, float)TVMET_IMPLEMENT_MACRO(div, float)TVMET_IMPLEMENT_MACRO(add, double)TVMET_IMPLEMENT_MACRO(sub, double)TVMET_IMPLEMENT_MACRO(mul, double)TVMET_IMPLEMENT_MACRO(div, double)#if defined(TVMET_HAVE_LONG_DOUBLE)TVMET_IMPLEMENT_MACRO(add, long double)TVMET_IMPLEMENT_MACRO(sub, long double)TVMET_IMPLEMENT_MACRO(mul, long double)TVMET_IMPLEMENT_MACRO(div, long double)#endif#undef TVMET_IMPLEMENT_MACRO#if defined(TVMET_HAVE_COMPLEX)/* * function(XprMatrix<E, Rows, Cols>, complex<T>) * function(complex<T>, XprMatrix<E, Rows, Cols>) * Note: - operations +,-,*,/ are per se element wise * \todo type promotion */#define TVMET_IMPLEMENT_MACRO(NAME)					\template<class E, class T, std::size_t Rows, std::size_t Cols>		\inline									\XprMatrix<								\  XprBinOp<								\    Fcnl_##NAME<typename E::value_type, std::complex<T> >,		\    XprMatrix<E, Rows, Cols>,						\    XprLiteral< std::complex<T> >					\  >,									\  Rows, Cols								\>									\NAME (const XprMatrix<E, Rows, Cols>& lhs, 				\      const std::complex<T>& rhs) {					\  typedef XprBinOp<							\    Fcnl_##NAME<typename E::value_type, std::complex<T> >,		\    XprMatrix<E, Rows, Cols>,						\    XprLiteral< std::complex<T> >					\  >							expr_type;	\  return XprMatrix<expr_type, Rows, Cols>(				\    expr_type(lhs, XprLiteral< std::complex<T> >(rhs)));		\}									\									\template<class T, class E, std::size_t Rows, std::size_t Cols>		\inline									\XprMatrix<								\  XprBinOp<								\    Fcnl_##NAME< std::complex<T>, typename E::value_type>,		\    XprLiteral< std::complex<T> >,					\    XprMatrix<E, Rows, Cols>						\  >,									\  Rows, Cols								\>									\NAME (const std::complex<T>& lhs, 					\      const XprMatrix<E, Rows, Cols>& rhs) {				\  typedef XprBinOp<							\    Fcnl_##NAME< std::complex<T>, typename E::value_type>,		\    XprLiteral< std::complex<T> >,					\    XprMatrix<E, Rows, Cols>						\  >							expr_type;	\  return XprMatrix<expr_type, Rows, Cols>(				\    expr_type(XprLiteral< std::complex<T> >(lhs), rhs));		\}TVMET_IMPLEMENT_MACRO(add)TVMET_IMPLEMENT_MACRO(sub)TVMET_IMPLEMENT_MACRO(mul)TVMET_IMPLEMENT_MACRO(div)#undef TVMET_IMPLEMENT_MACRO#endif // defined(TVMET_HAVE_COMPLEX)/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * matrix prod( ... ) functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*//** * \fn prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) * \brief Evaluate the product of two XprMatrix. * Perform on given Matrix M1 and M2: * \f[ * M_1\,M_2 * \f] * \note The numer of Rows2 has to be equal to Cols1. * \ingroup _binary_function */template<class E1, std::size_t Rows1, std::size_t Cols1,	 class E2, std::size_t Cols2>inlineXprMatrix<  XprMMProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,	// M1(Rows1, Cols1)    XprMatrix<E2, Cols1, Cols2>, Cols2  >,  Rows1, Cols2					// return Dim>prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) {  typedef XprMMProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    XprMatrix<E2, Cols1, Cols2>, Cols2  >							expr_type;  return XprMatrix<expr_type, Rows1, Cols2>(expr_type(lhs, rhs));}/** * \fn trans_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) * \brief Function for the trans(matrix-matrix-product) * Perform on given Matrix M1 and M2: * \f[ * (M_1\,M_2)^T * \f] * \note The numer of Rows2 has to be equal to Cols1. * \ingroup _binary_function */template<class E1, std::size_t Rows1, std::size_t Cols1,	 class E2, std::size_t Cols2>inlineXprMatrix<  XprMMProductTransposed<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,	// M1(Rows1, Cols1)    XprMatrix<E2, Cols1, Cols2>, Cols2		// M2(Cols1, Cols2)  >,  Cols2, Rows1					// return Dim>trans_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) {  typedef XprMMProductTransposed<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    XprMatrix<E2, Cols1, Cols2>, Cols2  >							expr_type;  return XprMatrix<expr_type, Cols2, Rows1>(expr_type(lhs, rhs));}/** * \fn MtM_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows1, Cols2>& rhs) * \brief Function for the trans(matrix)-matrix-product. *        using formula *        \f[ *        M_1^{T}\,M_2 *        \f] * \note The number of cols of matrix 2 have to be equal to number of rows of *       matrix 1, since matrix 1 is trans - the result is a (Cols1 x Cols2) *       matrix. * \ingroup _binary_function */template<class E1, std::size_t Rows1, std::size_t Cols1,	 class E2, std::size_t Cols2>	// Rows2 = Rows1inlineXprMatrix<  XprMtMProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,	// M1(Rows1, Cols1)    XprMatrix<E2, Rows1, Cols2>, Cols2		// M2(Rows1, Cols2)  >,  Cols1, Cols2					// return Dim>MtM_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows1, Cols2>& rhs) {  typedef XprMtMProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    XprMatrix<E2, Rows1, Cols2>, Cols2  >							expr_type;  return XprMatrix<expr_type, Cols1, Cols2>(expr_type(lhs, rhs));}/** * \fn MMt_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows2, Cols1>& rhs) * \brief Function for the matrix-trans(matrix)-product. * \ingroup _binary_function * \note The cols2 has to be equal to cols1. */template<class E1, std::size_t Rows1, std::size_t Cols1,	 class E2, std::size_t Rows2> // Cols2 = Cols1inlineXprMatrix<  XprMMtProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,	// M1(Rows1, Cols1)    XprMatrix<E2, Rows2, Cols1>, Cols1	 	// M2(Rows2, Cols1)  >,  Rows1, Rows2					// return Dim>MMt_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows2, Cols1>& rhs) {  typedef XprMMtProduct<    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    XprMatrix<E2, Rows2, Cols1>, Cols1  >							expr_type;  return XprMatrix<expr_type, Rows1, Rows2>(expr_type(lhs, rhs));}/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * matrix-vector specific prod( ... ) functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*//** * \fn prod(const XprMatrix<E1, Rows, Cols>& lhs, const XprVector<E2, Cols>& rhs) * \brief Evaluate the product of XprMatrix and XprVector. * \ingroup _binary_function */template<class E1, std::size_t Rows, std::size_t Cols,	 class E2>inlineXprVector<  XprMVProduct<    XprMatrix<E1, Rows, Cols>, Rows, Cols,    XprVector<E2, Cols>  >,  Rows>prod(const XprMatrix<E1, Rows, Cols>& lhs, const XprVector<E2, Cols>& rhs) {  typedef XprMVProduct<    XprMatrix<E1, Rows, Cols>, Rows, Cols,    XprVector<E2, Cols>  >							expr_type;  return XprVector<expr_type, Rows>(expr_type(lhs, rhs));}/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * matrix specific functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*//** * \fn trans(const XprMatrix<E, Rows, Cols>& rhs) * \brief Transpose an expression matrix. * \ingroup _unary_function */template<class E, std::size_t Rows, std::size_t Cols>inlineXprMatrix<  XprMatrixTranspose<    XprMatrix<E, Rows, Cols>  >,  Cols, Rows>trans(const XprMatrix<E, Rows, Cols>& rhs) {  typedef XprMatrixTranspose<    XprMatrix<E, Rows, Cols>  >							expr_type;  return XprMatrix<expr_type, Cols, Rows>(expr_type(rhs));}/* * \fn trace(const XprMatrix<E, Sz, Sz>& m) * \brief Compute the trace of a square matrix. * \ingroup _unary_function * * Simply compute the trace of the given matrix expression as: * \f[ *  \sum_{k = 0}^{Sz-1} m(k, k) * \f] */template<class E, std::size_t Sz>inlinetypename NumericTraits<typename E::value_type>::sum_typetrace(const XprMatrix<E, Sz, Sz>& m) {  return meta::Matrix<Sz, Sz, 0, 0>::trace(m);}/** * \fn row(const XprMatrix<E, Rows, Cols>& m, std::size_t no) * \brief Returns a row vector of the given matrix. * \ingroup _binary_function */template<class E, std::size_t Rows, std::size_t Cols>inlineXprVector<  XprMatrixRow<    XprMatrix<E, Rows, Cols>,    Rows, Cols  >,  Cols>row(const XprMatrix<E, Rows, Cols>& m, std::size_t no) {  typedef XprMatrixRow<    XprMatrix<E, Rows, Cols>,    Rows, Cols  >							expr_type;  return XprVector<expr_type, Cols>(expr_type(m, no));}/** * \fn col(const XprMatrix<E, Rows, Cols>& m, std::size_t no) * \brief Returns a column vector of the given matrix. * \ingroup _binary_function */template<class E, std::size_t Rows, std::size_t Cols>inlineXprVector<  XprMatrixCol<    XprMatrix<E, Rows, Cols>,    Rows, Cols  >,  Rows>col(const XprMatrix<E, Rows, Cols>& m, std::size_t no) {  typedef XprMatrixCol<    XprMatrix<E, Rows, Cols>,    Rows, Cols  >							expr_type;  return XprVector<expr_type, Cols>(expr_type(m, no));}/** * \fn diag(const XprMatrix<E, Sz, Sz>& m) * \brief Returns the diagonal vector of the given square matrix. * \ingroup _unary_function */template<class E, std::size_t Sz>inlineXprVector<  XprMatrixDiag<    XprMatrix<E, Sz, Sz>,    Sz  >,  Sz>diag(const XprMatrix<E, Sz, Sz>& m) {  typedef XprMatrixDiag<    XprMatrix<E, Sz, Sz>,  Sz> 						expr_type;  return XprVector<expr_type, Sz>(expr_type(m));}} // namespace tvmet#endif // TVMET_XPR_MATRIX_FUNCTIONS_H// Local Variables:// mode:C++// tab-width:8// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -