⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 idhashsha1.pas

📁 photo.163.com 相册下载器 多线程下载
💻 PAS
字号:
{ $HDR$}
{**********************************************************************}
{ Unit archived using Team Coherence                                   }
{ Team Coherence is Copyright 2002 by Quality Software Components      }
{                                                                      }
{ For further information / comments, visit our WEB site at            }
{ http://www.TeamCoherence.com                                         }
{**********************************************************************}
{}
{ $Log:  11607: IdHashSHA1.pas 
{
{   Rev 1.6    2003-10-12 15:25:50  HHellstr鰉
{ Comments added
}
{
{   Rev 1.5    2003-10-12 03:08:24  HHellstr鰉
{ New implementation; copyright changed. The source code formatting has been
{ adjusted to fit the margins. The new implementation is faster on dotNet
{ compared to the old one, but is slightly slower on Win32.
}
{
{   Rev 1.4    2003-10-11 18:44:54  HHellstr鰉
{ Range checking and overflow checking disabled in the Coder method only. The
{ purpose of this setting is to force the arithmetic operations performed on
{ LongWord variables to be modulo $100000000. This hack entails reasonable
{ performance on both Win32 and dotNet.
}
{
{   Rev 1.3    10/10/2003 2:20:56 PM  GGrieve
{ turn range checking off
}
{
{   Rev 1.2    2003-09-21 17:31:02  HHellstr鰉    Version: 1.2
{ DotNET compatibility
}
{
{   Rev 1.1    2/16/2003 03:19:18 PM  JPMugaas
{ Should now compile on D7 better.
}
{
{   Rev 1.0    11/13/2002 07:53:48 AM  JPMugaas
}
unit IdHashSHA1;

interface

uses
  Classes,
  IdHash;

const
  BufferSize = 64;

type
  T512BitRecord = array [0..BufferSize-1] of Byte;

  TIdHashSHA1 = class(TIdHash160)
  protected
    FCheckSum: T5x4LongWordRecord;
    FCBuffer: T512BitRecord;
    procedure Coder;
  public
    function HashValue(AStream: TStream): T5x4LongWordRecord; override;
  end;

implementation

{ TIdHashSHA1 }

function SwapLongword(Const ALongword: Longword): Longword;
begin
  Result:= ((ALongword and $FF) shl 24) or ((ALongword and $FF00) shl 8) or ((ALongword and $FF0000) shr 8) or ((ALongword and $FF000000) shr 24);
end;

function TIdHashSHA1.HashValue(AStream: TStream): T5x4LongWordRecord;
var
  LSize: LongInt;
  LLenHi: LongWord;
  LLenLo: LongWord;
  i: Integer;
begin
  FCheckSum[0] := $67452301;
  FCheckSum[1] := $EFCDAB89;
  FCheckSum[2] := $98BADCFE;
  FCheckSum[3] := $10325476;
  FCheckSum[4] := $C3D2E1F0;
  LLenHi := 0;
  LLenLo := 0;
  repeat
    LSize := AStream.Read(FCBuffer,BufferSize);
    Inc(LLenLo,LSize*8);
    if LLenLo < LongWord(LSize*8) then
      Inc(LLenHi);
    if LSize < BufferSize then begin
      FCBuffer[LSize] := $80;
      if LSize >= BufferSize - 8 then begin
        for i := LSize + 1 to Pred(BufferSize) do
          FCBuffer[i] := 0;
        Coder;
        LSize := -1;
      end;
      for i := LSize + 1 to Pred(BufferSize - 8) do
        FCBuffer[i] := 0;
      FCBuffer[BufferSize-8] := LLenHi shr 24;
      FCBuffer[BufferSize-7] := (LLenHi shr 16) and $FF;
      FCBuffer[BufferSize-6] := (LLenHi shr 8) and $FF;
      FCBuffer[BufferSize-5] := LLenHi and $FF;
      FCBuffer[BufferSize-4] := LLenLo shr 24;
      FCBuffer[BufferSize-3] := (LLenLo shr 16) and $FF;
      FCBuffer[BufferSize-2] := (LLenLo shr 8) and $FF;
      FCBuffer[BufferSize-1] := LLenLo and $FF;
      LSize := 0;
    end;
    Coder;
  until LSize < BufferSize;
  FCheckSum[0] := SwapLongWord(FCheckSum[0]);
  FCheckSum[1] := SwapLongWord(FCheckSum[1]);
  FCheckSum[2] := SwapLongWord(FCheckSum[2]);
  FCheckSum[3] := SwapLongWord(FCheckSum[3]);
  FCheckSum[4] := SwapLongWord(FCheckSum[4]);
  Result:=FCheckSum;
end;

{$Q-,R-} // Operations performed modulo $100000000
procedure TIdHashSHA1.Coder;
var
  T, A, B, C, D, E: LongWord;
  { The size of the W variable has been reduced to make the Coder method
    consume less memory on dotNet. This change has been tested with the v1.1
    framework and entails a general increase of performance by >50%. }
  W: array [0..19] of LongWord;
  i: LongWord;
begin
  { The first 16 W values are identical to the input block with endian
    conversion. }
  for i := 0 to 15 do
    W[i]:= (FCBuffer[i*4] shl 24) or
            (FCBuffer[i*4+1] shl 16) or
            (FCBuffer[i*4+2] shl 8) or
            FCBuffer[i*4+3];
  { In normal x86 code all of the remaining 64 W values would be calculated
    here. Here only the four next values are calculated, to reduce the code
    size of the first of the four loops below. }
  for i := 16 to 19 do begin
    T := W[i-3] xor W[i-8] xor W[i-14] xor W[i-16];
    W[i] := (T shl 1) or (T shr 31);
  end;
  A:= FCheckSum[0];
  B:= FCheckSum[1];
  C:= FCheckSum[2];
  D:= FCheckSum[3];
  E:= FCheckSum[4];

  { The following loop could be expanded, but has been kept together to reduce
    the code size. A small code size entails better performance due to CPU
    caching.

    Note that the code size could be reduced further by using the SHA-1
    reference code:

      for i := 0 to 19 do begin
        T := E + (A shl 5) + (A shr 27) + (D xor (B and (C xor D))) + W[i];
        Inc(T,$5A827999);
        E := D;
        D := C;
        C := (B shl 30) + (B shr 2);
        B := A;
        A := T;
      end;

    The reference code is usually (at least partly) expanded, mostly because
    the assignments that circle the state variables A, B, C, D and E are costly,
    in particular on dotNET. (In x86 code further optimization can be achieved
    by eliminating the loop variable, which occupies a CPU register that is
    better used by one of the state variables, plus by expanding the W array
    at the beginning.) }

  i := 0;
  repeat
    Inc(E,(A shl 5) + (A shr 27) + (D xor (B and (C xor D))) + W[i+0]);
    Inc(E,$5A827999);
    B := (B shl 30) + (B shr 2);
    Inc(D,(E shl 5) + (E shr 27) + (C xor (A and (B xor C))) + W[i+1]);
    Inc(D,$5A827999);
    A := (A shl 30) + (A shr 2);
    Inc(C,(D shl 5) + (D shr 27) + (B xor (E and (A xor B))) + W[i+2]);
    Inc(C,$5A827999);
    E := (E shl 30) + (E shr 2);
    Inc(B,(C shl 5) + (C shr 27) + (A xor (D and (E xor A))) + W[i+3]);
    Inc(B,$5A827999);
    D := (D shl 30) + (D shr 2);
    Inc(A,(B shl 5) + (B shr 27) + (E xor (C and (D xor E))) + W[i+4]);
    Inc(A,$5A827999);
    C := (C shl 30) + (C shr 2);
    Inc(i,5);
  until i = 20;

  { The following three loops will only use the first 16 elements of the W
    array in a circular, recursive pattern. The following assignments are a
    trade-off to avoid having to split up the first loop. }
  W[0] := W[16];
  W[1] := W[17];
  W[2] := W[18];
  W[3] := W[19];

  { In the following three loops the recursive W array expansion is performed
    "just in time" following a circular pattern. Using circular indicies (e.g.
    (i+2) and $F) is not free, but the cost of declaring a large W array would
    be higher on dotNET. Before attempting to optimize this code, please note
    that the following language features are also costly:

      * Assignments and moves/copies, in particular on dotNET
      * Constant lookup tables, in particular on dotNET
      * Sub functions, in particular on x86
      * if..then and case..of. }

  i := 20;
  repeat
    T := W[(i+13) and $F] xor W[(i+8) and $F];
    T := T xor W[(i+2) and $F] xor W[i and $F];
    T := (T shl 1) or (T shr 31);
    W[i and $F] := T;
    Inc(E,(A shl 5) + (A shr 27) + (B xor C xor D) + T + $6ED9EBA1);
    B := (B shl 30) + (B shr 2);
    T := W[(i+14) and $F] xor W[(i+9) and $F];
    T := T xor W[(i+3) and $F] xor W[(i+1) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+1) and $F] := T;
    Inc(D,(E shl 5) + (E shr 27) + (A xor B xor C) + T + $6ED9EBA1);
    A := (A shl 30) + (A shr 2);
    T := W[(i+15) and $F] xor W[(i+10) and $F];
    T := T xor W[(i+4) and $F] xor W[(i+2) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+2) and $F] := T;
    Inc(C,(D shl 5) + (D shr 27) + (E xor A xor B) + T + $6ED9EBA1);
    E := (E shl 30) + (E shr 2);
    T := W[i and $F] xor W[(i+11) and $F];
    T := T xor W[(i+5) and $F] xor W[(i+3) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+3) and $F] := T;
    Inc(B,(C shl 5) + (C shr 27) + (D xor E xor A) + T + $6ED9EBA1);
    D := (D shl 30) + (D shr 2);
    T := W[(i+1) and $F] xor W[(i+12) and $F];
    T := T xor W[(i+6) and $F] xor W[(i+4) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+4) and $F] := T;
    Inc(A,(B shl 5) + (B shr 27) + (C xor D xor E) + T + $6ED9EBA1);
    C := (C shl 30) + (C shr 2);
    Inc(i,5);
  until i = 40;

  { Note that the constant $70E44324 = $100000000 - $8F1BBCDC has been selected
    to slightly reduce the probability that the CPU flag C (Carry) is set. This
    trick is taken from the StreamSec(R) StrSecII(TM) implementation of SHA-1.
    It entails a marginal but measurable performance gain on some CPUs. }

  i := 40;
  repeat
    T := W[(i+13) and $F] xor W[(i+8) and $F];
    T := T xor W[(i+2) and $F] xor W[i and $F];
    T := (T shl 1) or (T shr 31);
    W[i and $F] := T;
    Inc(E,(A shl 5) + (A shr 27) + ((B and C) or (D and (B or C))) + T);
    Dec(E,$70E44324);
    B := (B shl 30) + (B shr 2);
    T := W[(i+14) and $F] xor W[(i+9) and $F];
    T := T xor W[(i+3) and $F] xor W[(i+1) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+1) and $F] := T;
    Inc(D,(E shl 5) + (E shr 27) + ((A and B) or (C and (A or B))) + T);
    Dec(D,$70E44324);
    A := (A shl 30) + (A shr 2);
    T := W[(i+15) and $F] xor W[(i+10) and $F];
    T := T xor W[(i+4) and $F] xor W[(i+2) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+2) and $F] := T;
    Inc(C,(D shl 5) + (D shr 27) + ((E and A) or (B and (E or A))) + T);
    Dec(C,$70E44324);
    E := (E shl 30) + (E shr 2);
    T := W[i and $F] xor W[(i+11) and $F];
    T := T xor W[(i+5) and $F] xor W[(i+3) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+3) and $F] := T;
    Inc(B,(C shl 5) + (C shr 27) + ((D and E) or (A and (D or E))) + T);
    Dec(B,$70E44324);
    D := (D shl 30) + (D shr 2);
    T := W[(i+1) and $F] xor W[(i+12) and $F];
    T := T xor W[(i+6) and $F] xor W[(i+4) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+4) and $F] := T;
    Inc(A,(B shl 5) + (B shr 27) + ((C and D) or (E and (C or D))) + T);
    Dec(A,$70E44324);
    C := (C shl 30) + (C shr 2);
    Inc(i,5);
  until i = 60;

  { Note that the constant $359D3E2A = $100000000 - $CA62C1D6 has been selected
    to slightly reduce the probability that the CPU flag C (Carry) is set. This
    trick is taken from the StreamSec(R) StrSecII(TM) implementation of SHA-1.
    It entails a marginal but measurable performance gain on some CPUs. }

  repeat
    T := W[(i+13) and $F] xor W[(i+8) and $F];
    T := T xor W[(i+2) and $F] xor W[i and $F];
    T := (T shl 1) or (T shr 31);
    W[i and $F] := T;
    Inc(E,(A shl 5) + (A shr 27) + (B xor C xor D) + T - $359D3E2A);
    B := (B shl 30) + (B shr 2);
    T := W[(i+14) and $F] xor W[(i+9) and $F];
    T := T xor W[(i+3) and $F] xor W[(i+1) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+1) and $F] := T;
    Inc(D,(E shl 5) + (E shr 27) + (A xor B xor C) + T - $359D3E2A);
    A := (A shl 30) + (A shr 2);
    T := W[(i+15) and $F] xor W[(i+10) and $F];
    T := T xor W[(i+4) and $F] xor W[(i+2) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+2) and $F] := T;
    Inc(C,(D shl 5) + (D shr 27) + (E xor A xor B) + T - $359D3E2A);
    E := (E shl 30) + (E shr 2);
    T := W[i and $F] xor W[(i+11) and $F];
    T := T xor W[(i+5) and $F] xor W[(i+3) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+3) and $F] := T;
    Inc(B,(C shl 5) + (C shr 27) + (D xor E xor A) + T - $359D3E2A);
    D := (D shl 30) + (D shr 2);
    T := W[(i+1) and $F] xor W[(i+12) and $F];
    T := T xor W[(i+6) and $F] xor W[(i+4) and $F];
    T := (T shl 1) or (T shr 31);
    W[(i+4) and $F] := T;
    Inc(A,(B shl 5) + (B shr 27) + (C xor D xor E) + T - $359D3E2A);
    C := (C shl 30) + (C shr 2);
    Inc(i,5);
  until i = 80;

  FCheckSum[0]:= FCheckSum[0] + A;
  FCheckSum[1]:= FCheckSum[1] + B;
  FCheckSum[2]:= FCheckSum[2] + C;
  FCheckSum[3]:= FCheckSum[3] + D;
  FCheckSum[4]:= FCheckSum[4] + E;
end;

end.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -