⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_hideo.c

📁 机器学习方法支持向量机SVM源程序
💻 C
📖 第 1 页 / 共 2 页
字号:
  j=n_indep;  for(i=n-1;i>=0;i--) {    if(!lin_dependent[i]) {      j--;      primal[i]=primal[j];    }    else if((m==0) && (g[i*n+i]==0)) {      /* if we use a biased hyperplane, each example with a zero diagonal */      /* entry must have an alpha at the upper bound. Doing this */      /* is essential for the HIDEO optimizer, since it cannot handle zero */      /* diagonal entries in the hessian for the unbiased hyperplane case. */      primal[i]=up[i];      }    else {      primal[i]=start[i];  /* leave as is */    }    temp[i]=primal[i];  }     if(verbosity>=3) {    obj_before=calculate_qp_objective(n,g,g0,init);    obj_after=calculate_qp_objective(n,g,g0,primal);    printf("before(%.30f)...after(%.30f)...result_sd(%d)...",	   obj_before,obj_after,result);   }  return((int)result);}int solve_dual(n,m,precision,epsilon_crit,maxiter,g,g0,ce,ce0,low,up,primal,	       d,d0,ig,dual,dual_old,temp,goal)     /* Solves the dual using the method of Hildreth and D'Espo. */     /* Can only handle problems with zero or exactly one */     /* equality constraints. */     long   n;            /* number of variables */     long   m;            /* number of linear equality constraints */     double precision;    /* solve at least to this dual precision */     double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */     long   maxiter;      /* stop after that many iterations */     double *g;     double *g0;          /* linear part of objective */     double *ce,*ce0;     /* linear equality constraints */     double *low,*up;     /* box constraints */     double *primal;      /* variables (with initial values) */     double *d,*d0,*ig,*dual,*dual_old,*temp;       /* buffer  */     long goal;{  long i,j,k,iter;  double sum,w,maxviol,viol,temp1,temp2,isnantest;  double model_b,dist;  long retrain,maxfaktor,primal_optimal=0,at_bound,scalemaxiter;  double epsilon_a=1E-15,epsilon_hideo;  double eq;   if((m<0) || (m>1))     perror("SOLVE DUAL: inappropriate number of eq-constrains!");  /*    printf("\n");  for(i=0;i<n;i++) {    printf("%f: ",g0[i]);    for(j=0;j<n;j++) {      printf("%f ",g[i*n+j]);    }    printf(": a=%.30f",primal[i]);    printf(": y=%f\n",ce[i]);  }  */  for(i=0;i<2*(n+m);i++) {    dual[i]=0;    dual_old[i]=0;  }  for(i=0;i<n;i++) {       for(j=0;j<n;j++) {   /* dual hessian for box constraints */      d[i*2*(n+m)+j]=ig[i*n+j];      d[(i+n)*2*(n+m)+j]=-ig[i*n+j];      d[i*2*(n+m)+j+n]=-ig[i*n+j];      d[(i+n)*2*(n+m)+j+n]=ig[i*n+j];    }    if(m>0) {      sum=0;              /* dual hessian for eq constraints */      for(j=0;j<n;j++) {	sum+=(ce[j]*ig[i*n+j]);      }      d[i*2*(n+m)+2*n]=sum;      d[i*2*(n+m)+2*n+1]=-sum;      d[(n+i)*2*(n+m)+2*n]=-sum;      d[(n+i)*2*(n+m)+2*n+1]=sum;      d[(n+n)*2*(n+m)+i]=sum;      d[(n+n+1)*2*(n+m)+i]=-sum;      d[(n+n)*2*(n+m)+(n+i)]=-sum;      d[(n+n+1)*2*(n+m)+(n+i)]=sum;            sum=0;      for(j=0;j<n;j++) {	for(k=0;k<n;k++) {	  sum+=(ce[k]*ce[j]*ig[j*n+k]);	}      }      d[(n+n)*2*(n+m)+2*n]=sum;      d[(n+n)*2*(n+m)+2*n+1]=-sum;      d[(n+n+1)*2*(n+m)+2*n]=-sum;      d[(n+n+1)*2*(n+m)+2*n+1]=sum;    }   }  for(i=0;i<n;i++) {   /* dual linear component for the box constraints */    w=0;    for(j=0;j<n;j++) {      w+=(ig[i*n+j]*g0[j]);     }    d0[i]=up[i]+w;    d0[i+n]=-low[i]-w;  }  if(m>0) {      sum=0;             /* dual linear component for eq constraints */    for(j=0;j<n;j++) {      for(k=0;k<n;k++) {	sum+=(ce[k]*ig[k*n+j]*g0[j]);       }    }    d0[2*n]=ce0[0]+sum;    d0[2*n+1]=-ce0[0]-sum;  }  maxviol=999999;  iter=0;  retrain=1;  maxfaktor=1;  scalemaxiter=maxiter/5;  while((retrain) && (maxviol > 0) && (iter < (scalemaxiter*maxfaktor))) {    iter++;        while((maxviol > precision) && (iter < (scalemaxiter*maxfaktor))) {      iter++;      maxviol=0;      for(i=0;i<2*(n+m);i++) {	sum=d0[i];	for(j=0;j<2*(n+m);j++) {	  sum+=d[i*2*(n+m)+j]*dual_old[j];	}	sum-=d[i*2*(n+m)+i]*dual_old[i];	dual[i]=-sum/d[i*2*(n+m)+i];	if(dual[i]<0) dual[i]=0;		viol=fabs(dual[i]-dual_old[i]);	if(viol>maxviol) 	  maxviol=viol;	dual_old[i]=dual[i];      }      /*      printf("%d) maxviol=%20f precision=%f\n",iter,maxviol,precision);       */    }      if(m>0) {      for(i=0;i<n;i++) {	temp[i]=dual[i]-dual[i+n]+ce[i]*(dual[n+n]-dual[n+n+1])+g0[i];      }    }     else {      for(i=0;i<n;i++) {	temp[i]=dual[i]-dual[i+n]+g0[i];      }    }    for(i=0;i<n;i++) {      primal[i]=0;             /* calc value of primal variables */      for(j=0;j<n;j++) {	primal[i]+=ig[i*n+j]*temp[j];      }      primal[i]*=-1.0;      if(primal[i]<=(low[i])) {  /* clip conservatively */	primal[i]=low[i];      }      else if(primal[i]>=(up[i])) {	primal[i]=up[i];      }    }    if(m>0)       model_b=dual[n+n+1]-dual[n+n];    else      model_b=0;    epsilon_hideo=EPSILON_HIDEO;    isnantest=0;    for(i=0;i<n;i++) {           /* check precision of alphas */      isnantest+=primal[i];      dist=-model_b*ce[i];       dist+=(g0[i]+1.0);      for(j=0;j<i;j++) {	dist+=(primal[j]*g[j*n+i]);      }      for(j=i;j<n;j++) {	dist+=(primal[j]*g[i*n+j]);      }      if((primal[i]<(up[i]-epsilon_hideo)) && (dist < (1.0-epsilon_crit))) {	epsilon_hideo=(up[i]-primal[i])*2.0;      }      else if((primal[i]>(low[i]+epsilon_hideo)) &&(dist>(1.0+epsilon_crit))) {	epsilon_hideo=(primal[i]-low[i])*2.0;      }    }    /* printf("\nEPSILON_HIDEO=%.30f\n",epsilon_hideo); */    for(i=0;i<n;i++) {           /* clip alphas to bounds */      if(primal[i]<=(low[i]+epsilon_hideo)) {	primal[i]=low[i];      }      else if(primal[i]>=(up[i]-epsilon_hideo)) {	primal[i]=up[i];      }    }    retrain=0;    primal_optimal=1;    at_bound=0;    for(i=0;(i<n);i++) {  /* check primal KT-Conditions */      dist=-model_b*ce[i];       dist+=(g0[i]+1.0);      for(j=0;j<i;j++) {	dist+=(primal[j]*g[j*n+i]);      }      for(j=i;j<n;j++) {	dist+=(primal[j]*g[i*n+j]);      }      if((primal[i]<(up[i]-epsilon_a)) && (dist < (1.0-epsilon_crit))) {	retrain=1;	primal_optimal=0;      }      else if((primal[i]>(low[i]+epsilon_a)) && (dist > (1.0+epsilon_crit))) {	retrain=1;	primal_optimal=0;      }      if((primal[i]<=(low[i]+epsilon_a)) || (primal[i]>=(up[i]-epsilon_a))) {	at_bound++;      }      /*    printf("HIDEOtemp: a[%ld]=%.30f, dist=%.6f, b=%f, at_bound=%ld\n",i,primal[i],dist,model_b,at_bound);  */    }    if(m>0) {      eq=-ce0[0];               /* check precision of eq-constraint */      for(i=0;i<n;i++) { 	eq+=(ce[i]*primal[i]);      }      if((EPSILON_EQ < fabs(eq)) 	 /*	 && !((goal==PRIMAL_OPTIMAL) 	       && (at_bound==n)) */	 ) {	retrain=1;	primal_optimal=0;      }      /* printf("\n eq=%.30f ce0=%f at-bound=%ld\n",eq,ce0[0],at_bound);  */    }    if(retrain) {      precision/=10;      if(((goal == PRIMAL_OPTIMAL) && (maxfaktor < 50000))	 || (maxfaktor < 5)) {	maxfaktor++;      }    }  }  if(!primal_optimal) {    for(i=0;i<n;i++) {      primal[i]=0;             /* calc value of primal variables */      for(j=0;j<n;j++) {	primal[i]+=ig[i*n+j]*temp[j];      }      primal[i]*=-1.0;      if(primal[i]<=(low[i]+epsilon_a)) {  /* clip conservatively */	primal[i]=low[i];      }      else if(primal[i]>=(up[i]-epsilon_a)) {	primal[i]=up[i];      }    }  }  isnantest=0;  for(i=0;i<n;i++) {           /* check for isnan */    isnantest+=primal[i];  }  if(m>0) {    temp1=dual[n+n+1];   /* copy the dual variables for the eq */    temp2=dual[n+n];     /* constraints to a handier location */    for(i=n+n+1;i>=2;i--) {      dual[i]=dual[i-2];    }    dual[0]=temp2;    dual[1]=temp1;    isnantest+=temp1+temp2;  }  if(isnan(isnantest)) {    return((int)NAN_SOLUTION);  }  else if(primal_optimal) {    return((int)PRIMAL_OPTIMAL);  }  else if(maxviol == 0.0) {    return((int)DUAL_OPTIMAL);  }  else {    return((int)MAXITER_EXCEEDED);  }}void linvert_matrix(matrix,depth,inverse,lindep_sensitivity,lin_dependent)double *matrix;long depth;double *inverse,lindep_sensitivity;long *lin_dependent;  /* indicates the active parts of matrix on 			 input and output*/{  long i,j,k;  double factor;  for(i=0;i<depth;i++) {    /*    lin_dependent[i]=0; */    for(j=0;j<depth;j++) {      inverse[i*depth+j]=0.0;    }    inverse[i*depth+i]=1.0;  }  for(i=0;i<depth;i++) {    if(lin_dependent[i] || (fabs(matrix[i*depth+i])<lindep_sensitivity)) {      lin_dependent[i]=1;    }    else {      for(j=i+1;j<depth;j++) {	factor=matrix[j*depth+i]/matrix[i*depth+i];	for(k=i;k<depth;k++) {	  matrix[j*depth+k]-=(factor*matrix[i*depth+k]);	}	for(k=0;k<depth;k++) {	  inverse[j*depth+k]-=(factor*inverse[i*depth+k]);	}      }    }  }  for(i=depth-1;i>=0;i--) {    if(!lin_dependent[i]) {      factor=1/matrix[i*depth+i];      for(k=0;k<depth;k++) {	inverse[i*depth+k]*=factor;      }      matrix[i*depth+i]=1;      for(j=i-1;j>=0;j--) {	factor=matrix[j*depth+i];	matrix[j*depth+i]=0;	for(k=0;k<depth;k++) {	  inverse[j*depth+k]-=(factor*inverse[i*depth+k]);	}      }    }  }}void lprint_matrix(matrix,depth)double *matrix;long depth;{  long i,j;  for(i=0;i<depth;i++) {    for(j=0;j<depth;j++) {      printf("%5.2f ",(double)(matrix[i*depth+j]));    }    printf("\n");  }  printf("\n");}void ladd_matrix(matrix,depth,scalar)double *matrix;long depth;double scalar;{  long i,j;  for(i=0;i<depth;i++) {    for(j=0;j<depth;j++) {      matrix[i*depth+j]+=scalar;    }  }}void lcopy_matrix(matrix,depth,matrix2) double *matrix;long depth;double *matrix2;{  long i;    for(i=0;i<(depth)*(depth);i++) {    matrix2[i]=matrix[i];  }}void lswitch_rows_matrix(matrix,depth,r1,r2) double *matrix;long depth,r1,r2;{  long i;  double temp;  for(i=0;i<depth;i++) {    temp=matrix[r1*depth+i];    matrix[r1*depth+i]=matrix[r2*depth+i];    matrix[r2*depth+i]=temp;  }}void lswitchrk_matrix(matrix,depth,rk1,rk2) double *matrix;long depth,rk1,rk2;{  long i;  double temp;  for(i=0;i<depth;i++) {    temp=matrix[rk1*depth+i];    matrix[rk1*depth+i]=matrix[rk2*depth+i];    matrix[rk2*depth+i]=temp;  }  for(i=0;i<depth;i++) {    temp=matrix[i*depth+rk1];    matrix[i*depth+rk1]=matrix[i*depth+rk2];    matrix[i*depth+rk2]=temp;  }}double calculate_qp_objective(opt_n,opt_g,opt_g0,alpha)long opt_n;double *opt_g,*opt_g0,*alpha;{  double obj;  long i,j;  obj=0;  /* calculate objective  */  for(i=0;i<opt_n;i++) {    obj+=(opt_g0[i]*alpha[i]);    obj+=(0.5*alpha[i]*alpha[i]*opt_g[i*opt_n+i]);    for(j=0;j<i;j++) {      obj+=(alpha[j]*alpha[i]*opt_g[j*opt_n+i]);    }  }  return(obj);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -