⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_learn.h

📁 机器学习方法支持向量机SVM源程序
💻 H
字号:
/***********************************************************************//*                                                                     *//*   svm_learn.h                                                       *//*                                                                     *//*   Declarations for learning module of Support Vector Machine.       *//*                                                                     *//*   Author: Thorsten Joachims                                         *//*   Date: 22.07.00                                                    *//*                                                                     *//*   Copyright (c) 2000  Universitaet Dortmund - All rights reserved   *//*                                                                     *//*   This software is available for non-commercial use only. It must   *//*   not be modified and distributed without prior permission of the   *//*   author. The author is not responsible for implications from the   *//*   use of this software.                                             *//*                                                                     *//***********************************************************************/void   svm_learn_classification(DOC *, double *, long, long, LEARN_PARM *, 				KERNEL_PARM *, KERNEL_CACHE *, MODEL *);void   svm_learn_regression(DOC *, double *, long, long, LEARN_PARM *, 			    KERNEL_PARM *, KERNEL_CACHE *, MODEL *);long   optimize_to_convergence(DOC *, long *, long, long, LEARN_PARM *,			       KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,			       MODEL *, long *, long *, double *,			       double *, double *,			       TIMING *, double *, long, long);double compute_objective_function(double *, double *, double *, double,				  long *, long *);void   clear_index(long *);void   add_to_index(long *, long);long   compute_index(long *,long, long *);void   optimize_svm(DOC *, long *, long *, long *, long *, MODEL *, long, 		    long *, long, double *, double *, double *, LEARN_PARM *, CFLOAT *, 		    KERNEL_PARM *, QP *, double *);void   compute_matrices_for_optimization(DOC *, long *, long *, long *, 					 long *, long *, MODEL *, double *, 					 double *, double *, long, long, LEARN_PARM *, 					 CFLOAT *, KERNEL_PARM *, QP *);long   calculate_svm_model(DOC *, long *, long *, double *, double *, 			   double *, double *, LEARN_PARM *, long *,			   long *, MODEL *);long   check_optimality(MODEL *, long *, long *, double *, double *,			double *, long, 			LEARN_PARM *,double *, double, long *, long *, long *,			long *, long, KERNEL_PARM *);long   identify_inconsistent(double *, long *, long *, long, LEARN_PARM *, 			     long *, long *);long   identify_misclassified(double *, long *, long *, long,			      MODEL *, long *, long *);long   identify_one_misclassified(double *, long *, long *, long,				  MODEL *, long *, long *);long   incorporate_unlabeled_examples(MODEL *, long *,long *, long *,				      double *, double *, long, double *,				      long *, long *, long, KERNEL_PARM *,				      LEARN_PARM *);void   update_linear_component(DOC *, long *, long *, double *, double *, 			       long *, long, long, KERNEL_PARM *, 			       KERNEL_CACHE *, double *,			       CFLOAT *, double *);long   select_next_qp_subproblem_grad(long *, long *, double *, 				      double *, double *, long,				      long, LEARN_PARM *, long *, long *, 				      long *, double *, long *, KERNEL_CACHE *,				      long *, long *);long   select_next_qp_subproblem_grad_cache(long *, long *, double *, double *,					    double *, long, long, LEARN_PARM *, long *, 					    long *, long *, double *, long *,					    KERNEL_CACHE *, long *, long *);long   select_next_qp_subproblem_rand(long *, long *, double *, 				      double *, double *, long,				      long, LEARN_PARM *, long *, long *, 				      long *, double *, long *, KERNEL_CACHE *,				      long *, long *, long);void   select_top_n(double *, long, long *, long);void   init_shrink_state(SHRINK_STATE *, long, long);void   shrink_state_cleanup(SHRINK_STATE *);long   shrink_problem(LEARN_PARM *, SHRINK_STATE *, long *, long *, long,  		      long, long, double *, long *);void   reactivate_inactive_examples(long *, long *, double *, SHRINK_STATE *,				    double *, double*, long, long, long, LEARN_PARM *, 				    long *, DOC *, KERNEL_PARM *,				    KERNEL_CACHE *, MODEL *, CFLOAT *, 				    double *, double *);/* cache kernel evalutations to improve speed */void   get_kernel_row(KERNEL_CACHE *,DOC *, long, long, long *, CFLOAT *, 		      KERNEL_PARM *);void   cache_kernel_row(KERNEL_CACHE *,DOC *, long, KERNEL_PARM *);void   cache_multiple_kernel_rows(KERNEL_CACHE *,DOC *, long *, long, 				  KERNEL_PARM *);void   kernel_cache_shrink(KERNEL_CACHE *,long, long, long *);void   kernel_cache_init(KERNEL_CACHE *,long, long);void   kernel_cache_reset_lru(KERNEL_CACHE *);void   kernel_cache_cleanup(KERNEL_CACHE *);long   kernel_cache_malloc(KERNEL_CACHE *);void   kernel_cache_free(KERNEL_CACHE *,long);long   kernel_cache_free_lru(KERNEL_CACHE *);CFLOAT *kernel_cache_clean_and_malloc(KERNEL_CACHE *,long);long   kernel_cache_touch(KERNEL_CACHE *,long);long   kernel_cache_check(KERNEL_CACHE *,long);void compute_xa_estimates(MODEL *, long *, long *, long, DOC *, 			  double *, double *, KERNEL_PARM *, 			  LEARN_PARM *, double *, double *, double *);double xa_estimate_error(MODEL *, long *, long *, long, DOC *, 			 double *, double *, KERNEL_PARM *, 			 LEARN_PARM *);double xa_estimate_recall(MODEL *, long *, long *, long, DOC *, 			  double *, double *, KERNEL_PARM *, 			  LEARN_PARM *);double xa_estimate_precision(MODEL *, long *, long *, long, DOC *, 			     double *, double *, KERNEL_PARM *, 			     LEARN_PARM *);void avg_similarity_of_sv_of_one_class(MODEL *, DOC *, double *, long *, KERNEL_PARM *, double *, double *);double most_similar_sv_of_same_class(MODEL *, DOC *, double *, long, long *, KERNEL_PARM *, LEARN_PARM *);double distribute_alpha_t_greedily(long *, long, DOC *, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double);double distribute_alpha_t_greedily_noindex(MODEL *, DOC *, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double); void estimate_transduction_quality(MODEL *, long *, long *, long, DOC *, double *);double estimate_margin_vcdim(MODEL *, double, double, KERNEL_PARM *);double estimate_sphere(MODEL *, KERNEL_PARM *);double estimate_r_delta_average(DOC *, long, KERNEL_PARM *); double estimate_r_delta(DOC *, long, KERNEL_PARM *); double length_of_longest_document_vector(DOC *, long, KERNEL_PARM *); void   write_model(char *, MODEL *);void   write_prediction(char *, MODEL *, double *, double *, long *, long *,			long, LEARN_PARM *);void   write_alphas(char *, double *, long *, long);typedef struct cache_parm_s {  KERNEL_CACHE *kernel_cache;  CFLOAT *cache;  DOC *docs;   long m;  KERNEL_PARM *kernel_parm;  long offset,stepsize;} cache_parm_t;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -