⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 algorithmldapca.1java

📁 包含了模式识别中常用的一些分类器设计算法
💻 1JAVA
📖 第 1 页 / 共 2 页
字号:
import java.util.*;
import java.awt.*;
/*
 * Created on Jul 15, 2003
 */

/**
 * @author Phil Trasatti
 *
 */
public class AlgorithmLDAPCA extends Algorithm
{
	// Public Data Members
	Vector decision_regions_d;
	Vector support_vectors_d;
	int output_canvas_d[][];

	// declare local Matrix objects
	Matrix W;
	Matrix LDA;
	Matrix CLDA; // covariance matrix for CLDA1
	Matrix B;
	Matrix S;
	Matrix invW;

        // declare LDA Class objects
        AlgorithmLDA ldaobject = new AlgorithmLDA();

	/* (non-Javadoc)
	 * @see IFAlgorithm#initialize()
	 */
    ldaobject.initialize();
// 	public boolean initialize()
// 	{
// 	    algo_id = "AlgorithmLDAPCA";
	    
// 	    //Debug
// 	    System.out.println(algo_id + " initialize()");
// 	    step_count = 3;
// 	    point_means_d = new Vector();
// 	    decision_regions_d = new Vector();
// 	    support_vectors_d = new Vector();
// 	    description_d = new Vector();
	    
// 	    // Initialize local Matrix objects
// 	    W = new Matrix();
// 	    LDA = new Matrix();
// 	    CLDA = new Matrix();
// 	    B = new Matrix();
// 	    S = new Matrix();
// 	    invW = new Matrix();

// 	    // Initialize LDA class object
// 	    ldaobject = new Algorithm();
	    
// 	    // Add the process description for the LDA algorithm
// 	    if (description_d.size() == 0)
// 	    {
// 		String str = new String("   0. Initialize the original data.");
// 		description_d.addElement(str);
		
// 		str = new String("   1. Displaying the original data.");
// 		description_d.addElement(str);
		
// 		str = new String("   2. Computing the means and covariance.");
// 		description_d.addElement(str);
		
// 		str = new String("   3. Computing the decision regions based on the class independent LDA algorithm.");
// 		description_d.addElement(str);
// 	    }

// 	    // append message to process box
// 	    pro_box_d.appendMessage("Class Independent LDA Analysis:" + "\n");
	    
// 	    // set the data points for this algorithm
// 	    set1_d = (Vector)data_points_d.dset1.clone();
// 	    set2_d = (Vector)data_points_d.dset2.clone();
// 	    set3_d = (Vector)data_points_d.dset3.clone();
// 	    set4_d = (Vector)data_points_d.dset4.clone();
	    
// 	    // set the step index
// 	    step_index_d = 0;
	    
// 	    // append message to process box
// 	    pro_box_d.appendMessage((String)description_d.get(step_index_d));
	    
// 	    // exit initialize
// 	    return true;
// 	}
 
     // ldaobject.step1();
 	boolean step1()
 	{
 	    // Debug
 	    System.out.println(algo_id + " step1()");

 	    pro_box_d.setProgressMin(0);
 	    pro_box_d.setProgressMax(20);
 	    pro_box_d.setProgressCurr(0);
	    
 	    // append message to process box
 	    output_panel_d.addOutput(set1_d, Classify.PTYPE_INPUT, 
 				     data_points_d.color_dset1);
 	    output_panel_d.addOutput(set2_d, Classify.PTYPE_INPUT,
 				     data_points_d.color_dset2);
 	    output_panel_d.addOutput(set3_d, Classify.PTYPE_INPUT,
 				     data_points_d.color_dset3);
 	    output_panel_d.addOutput(set4_d, Classify.PTYPE_INPUT, 
 				     data_points_d.color_dset4);
   
 	    // step 1 completed
 	    pro_box_d.setProgressCurr(20);
 	    output_panel_d.repaint();

 	    return true;
 	}

	boolean step2()
	{
	    // Debug
	    System.out.println(algo_id + " step2()");

	    pro_box_d.setProgressMin(0);
	    pro_box_d.setProgressMax(20);
	    pro_box_d.setProgressCurr(0);
	    
	    computeMeans();

	    // determine the within class scatter matrix
	    //
	    withinClass(W);
	    
	    // determine the between class scatter matrix
			//
	    betweenClass(B);
	    
	    // determine the ratio of the between class scatter matrix
	    // to the within class scatter matrix
	    //
	    W.invertMatrix(invW);
	    invW.multMatrix(B, S);
	    
	    // transform the samples from all data sets
	    //
	    transformLDA(data_points_d, S);

	    displayMatrices();

	    // display means
	    //----
	    output_panel_d.addOutput(point_means_d, Classify.PTYPE_OUTPUT_LARGE, Color.black);
	    
	    // display support vectors
	    //----
	    output_panel_d.addOutput(support_vectors_d, Classify.PTYPE_INPUT, Color.black );
	    
	    // display support vectors
	    //
	    pro_box_d.setProgressCurr(20);
	    output_panel_d.repaint();
	    
	    return true;
	}

	boolean step3()
	{
	    // Debug
	    System.out.println(algo_id + " step3()");


	    pro_box_d.setProgressMin(0);
	    pro_box_d.setProgressMax(20);
	    pro_box_d.setProgressCurr(0);
	    
	    // compute the decision regisions
	    //----
	    computeDecisionRegions();
	    
	    // compute errors
	    //
	    computeErrors();
	    
	    // display support vectors
	    //
	    // display support vectors
	    //----
	    output_panel_d.addOutput( decision_regions_d, Classify.PTYPE_INPUT, new Color(255, 200, 0));
	    
	    //Color.black);
	    output_panel_d.repaint();
	    
	    return true;
	}

	// method: withinClass
	//
	// arguments:
	//    Data d: input data points
	//    Matrix M: within class scatter matrix
	//
	// return   : none
	//
	// this method determines the within class scatter matrix
	//
	public void withinClass(Matrix M)
	{

	    // declare local variables
	    //
	    int size = 0;
	    double x[] = null;
	    double y[] = null;
	    
	    DisplayScale scale = output_panel_d.disp_area_d.getDisplayScale();

	    // declare the covariance object
	    //
	    Covariance cov = new Covariance();
	    
	    // declare local matrices
	    //
	    Matrix M1 = new Matrix();
	    Matrix M2 = new Matrix();
	    Matrix M3 = new Matrix();
	    Matrix M4 = new Matrix();
	    
	    // compute the propabilities of each data set
	    //
	    double maxsamples = set1_d.size() + set2_d.size() + set3_d.size() + set4_d.size();
	    
	    double p1 = set1_d.size() / maxsamples;
	    double p2 = set2_d.size() / maxsamples;
	    double p3 = set3_d.size() / maxsamples;
	    double p4 = set4_d.size() / maxsamples;
	    
	    // get the first data set size
	    //
	    size = set1_d.size();
	    
	    // initialize arrays to store the samples
	    //
	    x = new double[size];
	    y = new double[size];
	    
	    // set up the initial random vectors i.e., the vectors of
	    // X and Y coordinate points form the display
	    //
	    for (int i = 0; i < size; i++)
	    {
		MyPoint p = (MyPoint)set1_d.elementAt(i);
		x[i] = p.x;
		y[i] = p.y;
	    }
	    
	    // compute the covariance matrix of the first data set
	    //
	    M1.row = M1.col = 2;
	    M1.Elem = new double[2][2];
	    M1.resetMatrix();
	    
	    if (size > 0)
	    {
		M1.Elem = cov.computeCovariance(x, y);
	    }
	    
	    // get the second data set size
	    //
	    size = set2_d.size();
	    
	    // initialize arrays to store the samples
	    //
	    x = new double[size];
	    y = new double[size];
	    
	    // set up the initial random vectors i.e., the vectors of
	    // X and Y coordinate points form the display
	    //
	    for (int i = 0; i < size; i++)
	    {
		MyPoint p = (MyPoint)set2_d.elementAt(i);
		x[i] = p.x;
		y[i] = p.y;
	    }
	    
	    // compute the covariance matrix of the second data set
	    //
	    M2.row = M2.col = 2;
	    M2.Elem = new double[2][2];
	    M2.resetMatrix();
	    
	    if (size > 0)
	    {
		M2.Elem = cov.computeCovariance(x, y);
	    }
	    
	    // get the third data set size
	    //
	    size = set3_d.size();
	    
	    // initialize arrays to store the samples
	    //
	    x = new double[size];
	    y = new double[size];
	    
	    // set up the initial random vectors i.e., the vectors of
	    // X and Y coordinate points form the display
	    //
	    for (int i = 0; i < size; i++)
	    {
		MyPoint p = (MyPoint)set3_d.elementAt(i);
		x[i] = p.x;
		y[i] = p.y;
	    }
	    
	    // compute the covariance matrix of the third data set
	    //
	    M3.row = M3.col = 2;
	    M3.Elem = new double[2][2];
	    M3.resetMatrix();
	    
	    if (size > 0)
	    {
		M3.Elem = cov.computeCovariance(x, y);
	    }
	    
	    // get the fourth data set size
	    //
	    size = set4_d.size();
	    
	    // initialize arrays to store the samples
	    //
	    x = new double[size];
	    y = new double[size];
	    
	    // set up the initial random vectors i.e., the vectors of
	    // X and Y coordinate points form the display
	    //
	    for (int i = 0; i < size; i++)
	    {
		MyPoint p = (MyPoint)set4_d.elementAt(i);
		x[i] = p.x;
		y[i] = p.y;
	    }
	    
	    // compute the covariance matrix of the fourth data set
	    //
	    M4.row = M4.col = 2;
	    M4.Elem = new double[2][2];
	    M4.resetMatrix();
	    
	    if (size > 0)
	    {
		M4.Elem = cov.computeCovariance(x, y);
	    }
	    
	    // compute the within class scatter matrix
	    //
	    M.row = M.col = 2;
	    M.Elem = new double[2][2];
	    M.resetMatrix();
	    M.addMatrix(M1);
	    M.addMatrix(M2);
	    M.addMatrix(M3);
	    M.addMatrix(M4);
	    CLDA = M;
	}
    
    // method: betweenClass
    //
    // arguments:
    //    Data d: input data points
    //    Matrix M: between class scatter matrix
    //
    // return   : none
    //
    // this method determines the between class scatter matrix for
    // the class independent linear discrimination algorithm
    //
    public void betweenClass(Matrix M)
    {
	
	// declare local variables
	//
	int capacity = 0;
	int size = 0;
	
	double xmean = 0.0;
	double ymean = 0.0;
	
	double xmean1 = 0.0;
	double ymean1 = 0.0;
	double xmean2 = 0.0;
	double ymean2 = 0.0;
	double xmean3 = 0.0;
	double ymean3 = 0.0;
	double xmean4 = 0.0;
	double ymean4 = 0.0;
	
	// declare local matrices
	//
	Matrix M1 = new Matrix();
	Matrix T1 = new Matrix();
	Matrix M2 = new Matrix();
	Matrix T2 = new Matrix();
	Matrix M3 = new Matrix();
	Matrix T3 = new Matrix();
	Matrix M4 = new Matrix();
	Matrix T4 = new Matrix();
	
	// declare the covariance object
	//
	Covariance cov = new Covariance();
		
	// declare the initial random variables
	//
	double transpose[][] = new double[2][1];
	double mean[][] = new double[1][2];
	
	// compute the propabilities of each data set
	//
	double maxsamples = set1_d.size() + set2_d.size() + set3_d.size() + set4_d.size();
	
	double pr1 = set1_d.size() / maxsamples;
	double pr2 = set2_d.size() / maxsamples;
	double pr3 = set3_d.size() / maxsamples;
	double pr4 = set4_d.size() / maxsamples;
	
	DisplayScale scale = output_panel_d.disp_area_d.getDisplayScale();

	// initialize the between class matrix
	//
	M.row = M.col = 2;
	M.Elem = new double[2][2];
	M.resetMatrix();
	
	int j = 0;

	// obtain the means of each individual class
	//
	if (set1_d.size() > 0)
	{	    
	    MyPoint p = (MyPoint)point_means_d.elementAt(j);
	    j++;
	    xmean1 = p.x;
	    ymean1 = p.y;    
	}
	
	if (set2_d.size() > 0)
	{
	    MyPoint p = (MyPoint)point_means_d.elementAt(j);
	    j++;
	    xmean2 = p.x;
	    ymean2 = p.y;    
	}
	
	if (set3_d.size() > 0)
	{
	    MyPoint p = (MyPoint)point_means_d.elementAt(j);
	    j++;
	    xmean3 = p.x;
	    ymean3 = p.y;    
	}

	if (set4_d.size() > 0)
	{
	    MyPoint p = (MyPoint)point_means_d.elementAt(j);
	    j++;
	    xmean4 = p.x;
	    ymean4 = p.y;    
	}
	
	// compute the global mean of all data sets
	//
	int samples = 0;
	
	for (int i = 0; i < set1_d.size(); samples++, i++)
	{
	    MyPoint p2 = (MyPoint)set1_d.elementAt(i);
	    xmean += p2.x;
	    ymean += p2.y;
	}
	
	for (int i = 0; i < set2_d.size(); samples++, i++)
	{
	    MyPoint p2 = (MyPoint)set2_d.elementAt(i);
	    xmean += p2.x;
	    ymean += p2.y;
	}

	for (int i = 0; i < set3_d.size(); samples++, i++)
	{
	    MyPoint p2 = (MyPoint)set3_d.elementAt(i);
	    xmean += p2.x;
	    ymean += p2.y;
	}
	
	for (int i = 0; i < set4_d.size(); samples++, i++)
	{
	    MyPoint p2 = (MyPoint)set4_d.elementAt(i);
	    xmean += p2.x;
	    ymean += p2.y;
	}

	xmean /= samples;
	ymean /= samples;
	
	// compute the between class scatter contribution of the first set
	//
	if (set1_d.size() > 0)
	{
	    Matrix S = new Matrix();
	    
	    mean[0][0] = xmean1 - xmean;
	    mean[0][1] = ymean1 - ymean;
	    M1.initMatrix(mean, 1, 2);
	    
	    transpose[0][0] = xmean1 - xmean;
	    transpose[1][0] = ymean1 - ymean;
	    T1.initMatrix(transpose, 2, 1);
	    
	    T1.multMatrix(M1, S);
	    M.addMatrix(S);
	}
	
	// compute the between class scatter contribution of the second set
	//
	if (set2_d.size() > 0)
	{
	    
	    Matrix S = new Matrix();
	    
	    mean[0][0] = xmean2 - xmean;
	    mean[0][1] = ymean2 - ymean;
	    M2.initMatrix(mean, 1, 2);
	    
	    transpose[0][0] = xmean2 - xmean;
	    transpose[1][0] = ymean2 - ymean;
	    T2.initMatrix(transpose, 2, 1);
	    
	    T2.multMatrix(M2, S);
	    M.addMatrix(S);
	}
	
	// compute the between class scatter contribution of the third set
	//
	if (set3_d.size() > 0)
	{
	    
	    Matrix S = new Matrix();
	    
	    mean[0][0] = xmean3 - xmean;
	    mean[0][1] = ymean3 - ymean;
	    M3.initMatrix(mean, 1, 2);
	    
	    transpose[0][0] = xmean3 - xmean;
	    transpose[1][0] = ymean3 - ymean;
	    T3.initMatrix(transpose, 2, 1);
	    
	    T3.multMatrix(M3, S);
	    M.addMatrix(S);
	}
	
	// compute the between class scatter contribution of the forth set
	//
	if (set4_d.size() > 0)
	{
	    
	    Matrix S = new Matrix();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -