📄 algorithmldapca.1java
字号:
import java.util.*;
import java.awt.*;
/*
* Created on Jul 15, 2003
*/
/**
* @author Phil Trasatti
*
*/
public class AlgorithmLDAPCA extends Algorithm
{
// Public Data Members
Vector decision_regions_d;
Vector support_vectors_d;
int output_canvas_d[][];
// declare local Matrix objects
Matrix W;
Matrix LDA;
Matrix CLDA; // covariance matrix for CLDA1
Matrix B;
Matrix S;
Matrix invW;
// declare LDA Class objects
AlgorithmLDA ldaobject = new AlgorithmLDA();
/* (non-Javadoc)
* @see IFAlgorithm#initialize()
*/
ldaobject.initialize();
// public boolean initialize()
// {
// algo_id = "AlgorithmLDAPCA";
// //Debug
// System.out.println(algo_id + " initialize()");
// step_count = 3;
// point_means_d = new Vector();
// decision_regions_d = new Vector();
// support_vectors_d = new Vector();
// description_d = new Vector();
// // Initialize local Matrix objects
// W = new Matrix();
// LDA = new Matrix();
// CLDA = new Matrix();
// B = new Matrix();
// S = new Matrix();
// invW = new Matrix();
// // Initialize LDA class object
// ldaobject = new Algorithm();
// // Add the process description for the LDA algorithm
// if (description_d.size() == 0)
// {
// String str = new String(" 0. Initialize the original data.");
// description_d.addElement(str);
// str = new String(" 1. Displaying the original data.");
// description_d.addElement(str);
// str = new String(" 2. Computing the means and covariance.");
// description_d.addElement(str);
// str = new String(" 3. Computing the decision regions based on the class independent LDA algorithm.");
// description_d.addElement(str);
// }
// // append message to process box
// pro_box_d.appendMessage("Class Independent LDA Analysis:" + "\n");
// // set the data points for this algorithm
// set1_d = (Vector)data_points_d.dset1.clone();
// set2_d = (Vector)data_points_d.dset2.clone();
// set3_d = (Vector)data_points_d.dset3.clone();
// set4_d = (Vector)data_points_d.dset4.clone();
// // set the step index
// step_index_d = 0;
// // append message to process box
// pro_box_d.appendMessage((String)description_d.get(step_index_d));
// // exit initialize
// return true;
// }
// ldaobject.step1();
boolean step1()
{
// Debug
System.out.println(algo_id + " step1()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
// append message to process box
output_panel_d.addOutput(set1_d, Classify.PTYPE_INPUT,
data_points_d.color_dset1);
output_panel_d.addOutput(set2_d, Classify.PTYPE_INPUT,
data_points_d.color_dset2);
output_panel_d.addOutput(set3_d, Classify.PTYPE_INPUT,
data_points_d.color_dset3);
output_panel_d.addOutput(set4_d, Classify.PTYPE_INPUT,
data_points_d.color_dset4);
// step 1 completed
pro_box_d.setProgressCurr(20);
output_panel_d.repaint();
return true;
}
boolean step2()
{
// Debug
System.out.println(algo_id + " step2()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
computeMeans();
// determine the within class scatter matrix
//
withinClass(W);
// determine the between class scatter matrix
//
betweenClass(B);
// determine the ratio of the between class scatter matrix
// to the within class scatter matrix
//
W.invertMatrix(invW);
invW.multMatrix(B, S);
// transform the samples from all data sets
//
transformLDA(data_points_d, S);
displayMatrices();
// display means
//----
output_panel_d.addOutput(point_means_d, Classify.PTYPE_OUTPUT_LARGE, Color.black);
// display support vectors
//----
output_panel_d.addOutput(support_vectors_d, Classify.PTYPE_INPUT, Color.black );
// display support vectors
//
pro_box_d.setProgressCurr(20);
output_panel_d.repaint();
return true;
}
boolean step3()
{
// Debug
System.out.println(algo_id + " step3()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
// compute the decision regisions
//----
computeDecisionRegions();
// compute errors
//
computeErrors();
// display support vectors
//
// display support vectors
//----
output_panel_d.addOutput( decision_regions_d, Classify.PTYPE_INPUT, new Color(255, 200, 0));
//Color.black);
output_panel_d.repaint();
return true;
}
// method: withinClass
//
// arguments:
// Data d: input data points
// Matrix M: within class scatter matrix
//
// return : none
//
// this method determines the within class scatter matrix
//
public void withinClass(Matrix M)
{
// declare local variables
//
int size = 0;
double x[] = null;
double y[] = null;
DisplayScale scale = output_panel_d.disp_area_d.getDisplayScale();
// declare the covariance object
//
Covariance cov = new Covariance();
// declare local matrices
//
Matrix M1 = new Matrix();
Matrix M2 = new Matrix();
Matrix M3 = new Matrix();
Matrix M4 = new Matrix();
// compute the propabilities of each data set
//
double maxsamples = set1_d.size() + set2_d.size() + set3_d.size() + set4_d.size();
double p1 = set1_d.size() / maxsamples;
double p2 = set2_d.size() / maxsamples;
double p3 = set3_d.size() / maxsamples;
double p4 = set4_d.size() / maxsamples;
// get the first data set size
//
size = set1_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set1_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the first data set
//
M1.row = M1.col = 2;
M1.Elem = new double[2][2];
M1.resetMatrix();
if (size > 0)
{
M1.Elem = cov.computeCovariance(x, y);
}
// get the second data set size
//
size = set2_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set2_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the second data set
//
M2.row = M2.col = 2;
M2.Elem = new double[2][2];
M2.resetMatrix();
if (size > 0)
{
M2.Elem = cov.computeCovariance(x, y);
}
// get the third data set size
//
size = set3_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set3_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the third data set
//
M3.row = M3.col = 2;
M3.Elem = new double[2][2];
M3.resetMatrix();
if (size > 0)
{
M3.Elem = cov.computeCovariance(x, y);
}
// get the fourth data set size
//
size = set4_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set4_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the fourth data set
//
M4.row = M4.col = 2;
M4.Elem = new double[2][2];
M4.resetMatrix();
if (size > 0)
{
M4.Elem = cov.computeCovariance(x, y);
}
// compute the within class scatter matrix
//
M.row = M.col = 2;
M.Elem = new double[2][2];
M.resetMatrix();
M.addMatrix(M1);
M.addMatrix(M2);
M.addMatrix(M3);
M.addMatrix(M4);
CLDA = M;
}
// method: betweenClass
//
// arguments:
// Data d: input data points
// Matrix M: between class scatter matrix
//
// return : none
//
// this method determines the between class scatter matrix for
// the class independent linear discrimination algorithm
//
public void betweenClass(Matrix M)
{
// declare local variables
//
int capacity = 0;
int size = 0;
double xmean = 0.0;
double ymean = 0.0;
double xmean1 = 0.0;
double ymean1 = 0.0;
double xmean2 = 0.0;
double ymean2 = 0.0;
double xmean3 = 0.0;
double ymean3 = 0.0;
double xmean4 = 0.0;
double ymean4 = 0.0;
// declare local matrices
//
Matrix M1 = new Matrix();
Matrix T1 = new Matrix();
Matrix M2 = new Matrix();
Matrix T2 = new Matrix();
Matrix M3 = new Matrix();
Matrix T3 = new Matrix();
Matrix M4 = new Matrix();
Matrix T4 = new Matrix();
// declare the covariance object
//
Covariance cov = new Covariance();
// declare the initial random variables
//
double transpose[][] = new double[2][1];
double mean[][] = new double[1][2];
// compute the propabilities of each data set
//
double maxsamples = set1_d.size() + set2_d.size() + set3_d.size() + set4_d.size();
double pr1 = set1_d.size() / maxsamples;
double pr2 = set2_d.size() / maxsamples;
double pr3 = set3_d.size() / maxsamples;
double pr4 = set4_d.size() / maxsamples;
DisplayScale scale = output_panel_d.disp_area_d.getDisplayScale();
// initialize the between class matrix
//
M.row = M.col = 2;
M.Elem = new double[2][2];
M.resetMatrix();
int j = 0;
// obtain the means of each individual class
//
if (set1_d.size() > 0)
{
MyPoint p = (MyPoint)point_means_d.elementAt(j);
j++;
xmean1 = p.x;
ymean1 = p.y;
}
if (set2_d.size() > 0)
{
MyPoint p = (MyPoint)point_means_d.elementAt(j);
j++;
xmean2 = p.x;
ymean2 = p.y;
}
if (set3_d.size() > 0)
{
MyPoint p = (MyPoint)point_means_d.elementAt(j);
j++;
xmean3 = p.x;
ymean3 = p.y;
}
if (set4_d.size() > 0)
{
MyPoint p = (MyPoint)point_means_d.elementAt(j);
j++;
xmean4 = p.x;
ymean4 = p.y;
}
// compute the global mean of all data sets
//
int samples = 0;
for (int i = 0; i < set1_d.size(); samples++, i++)
{
MyPoint p2 = (MyPoint)set1_d.elementAt(i);
xmean += p2.x;
ymean += p2.y;
}
for (int i = 0; i < set2_d.size(); samples++, i++)
{
MyPoint p2 = (MyPoint)set2_d.elementAt(i);
xmean += p2.x;
ymean += p2.y;
}
for (int i = 0; i < set3_d.size(); samples++, i++)
{
MyPoint p2 = (MyPoint)set3_d.elementAt(i);
xmean += p2.x;
ymean += p2.y;
}
for (int i = 0; i < set4_d.size(); samples++, i++)
{
MyPoint p2 = (MyPoint)set4_d.elementAt(i);
xmean += p2.x;
ymean += p2.y;
}
xmean /= samples;
ymean /= samples;
// compute the between class scatter contribution of the first set
//
if (set1_d.size() > 0)
{
Matrix S = new Matrix();
mean[0][0] = xmean1 - xmean;
mean[0][1] = ymean1 - ymean;
M1.initMatrix(mean, 1, 2);
transpose[0][0] = xmean1 - xmean;
transpose[1][0] = ymean1 - ymean;
T1.initMatrix(transpose, 2, 1);
T1.multMatrix(M1, S);
M.addMatrix(S);
}
// compute the between class scatter contribution of the second set
//
if (set2_d.size() > 0)
{
Matrix S = new Matrix();
mean[0][0] = xmean2 - xmean;
mean[0][1] = ymean2 - ymean;
M2.initMatrix(mean, 1, 2);
transpose[0][0] = xmean2 - xmean;
transpose[1][0] = ymean2 - ymean;
T2.initMatrix(transpose, 2, 1);
T2.multMatrix(M2, S);
M.addMatrix(S);
}
// compute the between class scatter contribution of the third set
//
if (set3_d.size() > 0)
{
Matrix S = new Matrix();
mean[0][0] = xmean3 - xmean;
mean[0][1] = ymean3 - ymean;
M3.initMatrix(mean, 1, 2);
transpose[0][0] = xmean3 - xmean;
transpose[1][0] = ymean3 - ymean;
T3.initMatrix(transpose, 2, 1);
T3.multMatrix(M3, S);
M.addMatrix(S);
}
// compute the between class scatter contribution of the forth set
//
if (set4_d.size() > 0)
{
Matrix S = new Matrix();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -