📄 algorithmldapca.java
字号:
//--------------------------------------------------------------------------
// AlgorithmLBG.java 6.0 03/15/2005
// Created : Phil Trasatti Edited : Daniel May
// Edited : Sanjay Patil
// Last Edited : Ryan Irwin
//
// Description : Describes the LDAPCA algorithm
// Remarks : Code unchanged since created. Created 07/15/2003
//--------------------------------------------------------------------------
//----------------------
// import java packages
//----------------------
import java.util.*;
import java.awt.*;
/**
* Implements the combined LDA and PCA algorithm. The LDA is implemented
* first and then PCA is implemented.
*/
public class AlgorithmLDAPCA extends Algorithm
{
// Public Data Members
//
Vector<MyPoint> decision_regions_d;
Vector<MyPoint> support_vectors_d;
int output_canvas_d[][];
// declare local Matrix objects
// covariance matrix for CLDA
Matrix W;
Matrix LDA;
Matrix CLDA;
Matrix B;
Matrix S;
Matrix invW;
// for PCA declare
//
Matrix trans_matrix_d = new Matrix();
Matrix cov_matrix_d = new Matrix();
// declare LDA Class objects
// AlgorithmLDA ldaobject = new AlgorithmLDA();
/**
* Overrides the initialize() method in the base class. Initializes
* member data and prepares for execution of first step. This method
* "resets" the algorithm.
*
* @return Returns true
*/
public boolean initialize()
{
algo_id = "AlgorithmLDAPCA";
// Debug
// System.out.println(algo_id + " initialize()");
step_count = 4;
point_means_d = new Vector<MyPoint>();
decision_regions_d = new Vector<MyPoint>();
support_vectors_d = new Vector<MyPoint>();
description_d = new Vector<String>();
// for PCA
//
trans_matrix_d = new Matrix();
cov_matrix_d = new Matrix();
// Initialize local Matrix objects
//
W = new Matrix();
LDA = new Matrix();
CLDA = new Matrix();
B = new Matrix();
S = new Matrix();
invW = new Matrix();
// Initialize LDA class object
// ldaobject = new Algorithm();
// Add the process description for the LDA algorithm
//
if (description_d.size() == 0)
{
String str = new String(" 0. Initialize the original data.");
description_d.addElement(str);
str = new String(" 1. Displaying the original data.");
description_d.addElement(str);
str = new String(" 2. Computing the means and covariance for LDA.");
description_d.addElement(str);
str = new String(" 3. Computing the means and covaricance for PCA followed by LDA algorithm.");
description_d.addElement(str);
str = new String(" 4. Computing the decision regions based on the LDA followed by PCA class independent principal component analysis algorithm.");
description_d.addElement(str);
}
// append message to process box
//
pro_box_d.appendMessage("Class Independent LDA Analysis:" + "\n");
// set the data points for this algorithm
//
// set1_d = (Vector)data_points_d.dset1.clone();
// set2_d = (Vector)data_points_d.dset2.clone();
// set3_d = (Vector)data_points_d.dset3.clone();
// set4_d = (Vector)data_points_d.dset4.clone();
//
set1_d = data_points_d.dset1;
set2_d = data_points_d.dset2;
set3_d = data_points_d.dset3;
set4_d = data_points_d.dset4;
// set the step index
//
step_index_d = 0;
// append message to process box
//
pro_box_d.appendMessage((String)description_d.get(step_index_d));
// exit initialize
//
return true;
}
/**
* Implementation of the run function from the Runnable interface.
* Determines what the current step is and calls the appropriate method.
*/
public void run()
{
// Debug
//
// System.out.println(algo_id + " run()");
if (step_index_d == 1)
{
disableControl();
step1();
enableControl();
}
else if (step_index_d == 2)
{
disableControl();
step2();
enableControl();
}
else if (step_index_d == 3)
{
disableControl();
step3();
enableControl();
}
else if (step_index_d == 4)
{
disableControl();
step4();
pro_box_d.appendMessage(" Algorithm Complete");
enableControl();
}
return;
}
/**
* Displays data sets from input box in output box.
*
* @return Returns true
*/
boolean step1()
{
// Debug
//
// System.out.println(algo_id + " step1()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
// append message to process box
//
output_panel_d.addOutput(set1_d, Classify.PTYPE_INPUT,
data_points_d.color_dset1);
output_panel_d.addOutput(set2_d, Classify.PTYPE_INPUT,
data_points_d.color_dset2);
output_panel_d.addOutput(set3_d, Classify.PTYPE_INPUT,
data_points_d.color_dset3);
output_panel_d.addOutput(set4_d, Classify.PTYPE_INPUT,
data_points_d.color_dset4);
// step 1 completed
//
pro_box_d.setProgressCurr(20);
output_panel_d.repaint();
return true;
}
/**
* Calculates the within class and between class scatter matrix,
* transforms the data sets ans displays the mean graphically
* and numerically
*
* @return Returns true
*/
boolean step2()
{
// Debug
//
// System.out.println(algo_id + " step2()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
computeMeans();
// determine the within class scatter matrix
//
withinClass(W);
// determine the between class scatter matrix
//
betweenClass(B);
// determine the ratio of the between class scatter matrix
// to the within class scatter matrix
//
W.invertMatrix(invW);
invW.multMatrix(B, S);
// transform the samples from all data sets
//
transformLDA(data_points_d, S);
displayMatrices();
// display means
//
output_panel_d.addOutput(point_means_d, Classify.PTYPE_OUTPUT_LARGE,
Color.black);
// display support vectors
//
output_panel_d.addOutput(support_vectors_d, Classify.PTYPE_INPUT,
Color.black );
// display support vectors
//
pro_box_d.setProgressCurr(20);
output_panel_d.repaint();
return true;
}
/**
* Transforms the data set using PCA and computes mean on the transformed
* data. Displays the transformed Matrices.
*
* @return Returns true
*/
boolean step3()
{
// Debug
//
// System.out.println(algo_id + ": step3()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
// append message to process box
//
transformPCA();
printMatrices();
computeMeans();
// display means
//
output_panel_d.addOutput(point_means_d,
Classify.PTYPE_OUTPUT_LARGE, Color.black);
// display support vectors
//
output_panel_d.addOutput(support_vectors_d,
Classify.PTYPE_INPUT, Color.cyan);
// display support vectors
//
pro_box_d.setProgressCurr(20);
output_panel_d.repaint();
// exit gracefully
//
return true;
}
/**
* Computes the decision regions and totals the data points in error,
* as well displays the decision region
*
* @return Returns true
*/
boolean step4()
{
// Debug
//
// System.out.println(algo_id + ": step4()");
pro_box_d.setProgressMin(0);
pro_box_d.setProgressMax(20);
pro_box_d.setProgressCurr(0);
// compute the decision regisions
//
computeDecisionRegions();
// compute errors
//
computeErrors();
// display support vectors
//
output_panel_d.addOutput(decision_regions_d,
Classify.PTYPE_INPUT, new Color(255, 200, 0));
output_panel_d.repaint();
// exit gracefully
//
return true;
}
/**
* Determines the within class scatter matrix
*
* @param M Matrix for within class scatter matrix
* @see Matrix
*/
public void withinClass(Matrix M)
{
// declare local variables
//
int size = 0;
double x[] = null;
double y[] = null;
DisplayScale scale = output_panel_d.disp_area_d.getDisplayScale();
// declare the covariance object
//
Covariance cov = new Covariance();
// declare local matrices
//
Matrix M1 = new Matrix();
Matrix M2 = new Matrix();
Matrix M3 = new Matrix();
Matrix M4 = new Matrix();
// compute the propabilities of each data set
//
double maxsamples = set1_d.size() + set2_d.size()
+ set3_d.size() + set4_d.size();
double p1 = set1_d.size() / maxsamples;
double p2 = set2_d.size() / maxsamples;
double p3 = set3_d.size() / maxsamples;
double p4 = set4_d.size() / maxsamples;
// get the first data set size
//
size = set1_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set1_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the first data set
//
M1.row = M1.col = 2;
M1.Elem = new double[2][2];
M1.resetMatrix();
if (size > 0)
{
M1.Elem = cov.computeCovariance(x, y);
}
// get the second data set size
//
size = set2_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set2_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the second data set
//
M2.row = M2.col = 2;
M2.Elem = new double[2][2];
M2.resetMatrix();
if (size > 0)
{
M2.Elem = cov.computeCovariance(x, y);
}
// get the third data set size
//
size = set3_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set3_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the third data set
//
M3.row = M3.col = 2;
M3.Elem = new double[2][2];
M3.resetMatrix();
if (size > 0)
{
M3.Elem = cov.computeCovariance(x, y);
}
// get the fourth data set size
//
size = set4_d.size();
// initialize arrays to store the samples
//
x = new double[size];
y = new double[size];
// set up the initial random vectors i.e., the vectors of
// X and Y coordinate points form the display
//
for (int i = 0; i < size; i++)
{
MyPoint p = (MyPoint)set4_d.elementAt(i);
x[i] = p.x;
y[i] = p.y;
}
// compute the covariance matrix of the fourth data set
//
M4.row = M4.col = 2;
M4.Elem = new double[2][2];
M4.resetMatrix();
if (size > 0)
{
M4.Elem = cov.computeCovariance(x, y);
}
// compute the within class scatter matrix
//
M.row = M.col = 2;
M.Elem = new double[2][2];
M.resetMatrix();
M.addMatrix(M1);
M.addMatrix(M2);
M.addMatrix(M3);
M.addMatrix(M4);
CLDA = M;
}
/**
* Determines the between class scatter matrix for
* the class independent linear discrimination algorithm
*
* @param M Matrix for storing between class scatter matrix
* @see Matrix
*/
public void betweenClass(Matrix M)
{
// declare local variables
//
int capacity = 0;
int size = 0;
double xmean = 0.0;
double ymean = 0.0;
double xmean1 = 0.0;
double ymean1 = 0.0;
double xmean2 = 0.0;
double ymean2 = 0.0;
double xmean3 = 0.0;
double ymean3 = 0.0;
double xmean4 = 0.0;
double ymean4 = 0.0;
// declare local matrices
//
Matrix M1 = new Matrix();
Matrix T1 = new Matrix();
Matrix M2 = new Matrix();
Matrix T2 = new Matrix();
Matrix M3 = new Matrix();
Matrix T3 = new Matrix();
Matrix M4 = new Matrix();
Matrix T4 = new Matrix();
// declare the covariance object
//
Covariance cov = new Covariance();
// declare the initial random variables
//
double transpose[][] = new double[2][1];
double mean[][] = new double[1][2];
// compute the propabilities of each data set
//
double maxsamples = set1_d.size() + set2_d.size()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -