📄 thread.c
字号:
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- *//* * Thread management for memcached. * * $Id$ */#include "memcached.h"#include <stdio.h>#include <errno.h>#include <stdlib.h>#include <errno.h>#ifdef HAVE_MALLOC_H#include <malloc.h>#endif#ifdef USE_THREADS#include <pthread.h>#define ITEMS_PER_ALLOC 64/* An item in the connection queue. */typedef struct conn_queue_item CQ_ITEM;struct conn_queue_item { int sfd; int init_state; int event_flags; int read_buffer_size; int is_udp; CQ_ITEM *next;};/* A connection queue. */typedef struct conn_queue CQ;struct conn_queue { CQ_ITEM *head; CQ_ITEM *tail; pthread_mutex_t lock; pthread_cond_t cond;};/* Lock for connection freelist */static pthread_mutex_t conn_lock;/* Lock for cache operations (item_*, assoc_*) */static pthread_mutex_t cache_lock;/* Lock for slab allocator operations */static pthread_mutex_t slabs_lock;/* Lock for global stats */static pthread_mutex_t stats_lock;/* Free list of CQ_ITEM structs */static CQ_ITEM *cqi_freelist;static pthread_mutex_t cqi_freelist_lock;/* * Each libevent instance has a wakeup pipe, which other threads * can use to signal that they've put a new connection on its queue. */typedef struct { pthread_t thread_id; /* unique ID of this thread */ struct event_base *base; /* libevent handle this thread uses */ struct event notify_event; /* listen event for notify pipe */ int notify_receive_fd; /* receiving end of notify pipe */ int notify_send_fd; /* sending end of notify pipe */ CQ new_conn_queue; /* queue of new connections to handle */} LIBEVENT_THREAD;static LIBEVENT_THREAD *threads;/* * Number of threads that have finished setting themselves up. */static int init_count = 0;static pthread_mutex_t init_lock;static pthread_cond_t init_cond;static void thread_libevent_process(int fd, short which, void *arg);/* * Initializes a connection queue. */static void cq_init(CQ *cq) { pthread_mutex_init(&cq->lock, NULL); pthread_cond_init(&cq->cond, NULL); cq->head = NULL; cq->tail = NULL;}/* * Waits for work on a connection queue. */static CQ_ITEM *cq_pop(CQ *cq) { CQ_ITEM *item; pthread_mutex_lock(&cq->lock); while (NULL == cq->head) pthread_cond_wait(&cq->cond, &cq->lock); item = cq->head; cq->head = item->next; if (NULL == cq->head) cq->tail = NULL; pthread_mutex_unlock(&cq->lock); return item;}/* * Looks for an item on a connection queue, but doesn't block if there isn't * one. */static CQ_ITEM *cq_peek(CQ *cq) { CQ_ITEM *item; pthread_mutex_lock(&cq->lock); item = cq->head; if (NULL != item) { cq->head = item->next; if (NULL == cq->head) cq->tail = NULL; } pthread_mutex_unlock(&cq->lock); return item;}/* * Adds an item to a connection queue. */static void cq_push(CQ *cq, CQ_ITEM *item) { item->next = NULL; pthread_mutex_lock(&cq->lock); if (NULL == cq->tail) cq->head = item; else cq->tail->next = item; cq->tail = item; pthread_cond_signal(&cq->cond); pthread_mutex_unlock(&cq->lock);}/* * Returns a fresh connection queue item. */static CQ_ITEM *cqi_new() { CQ_ITEM *item = NULL; pthread_mutex_lock(&cqi_freelist_lock); if (cqi_freelist) { item = cqi_freelist; cqi_freelist = item->next; } pthread_mutex_unlock(&cqi_freelist_lock); if (NULL == item) { int i; /* Allocate a bunch of items at once to reduce fragmentation */ item = malloc(sizeof(CQ_ITEM) * ITEMS_PER_ALLOC); if (NULL == item) return NULL; /* * Link together all the new items except the first one * (which we'll return to the caller) for placement on * the freelist. */ for (i = 2; i < ITEMS_PER_ALLOC; i++) item[i - 1].next = &item[i]; pthread_mutex_lock(&cqi_freelist_lock); item[ITEMS_PER_ALLOC - 1].next = cqi_freelist; cqi_freelist = &item[1]; pthread_mutex_unlock(&cqi_freelist_lock); } return item;}/* * Frees a connection queue item (adds it to the freelist.) */static void cqi_free(CQ_ITEM *item) { pthread_mutex_lock(&cqi_freelist_lock); item->next = cqi_freelist; cqi_freelist = item; pthread_mutex_unlock(&cqi_freelist_lock);}/* * Creates a worker thread. */static void create_worker(void *(*func)(void *), void *arg) { pthread_t thread; pthread_attr_t attr; int ret; pthread_attr_init(&attr); if (ret = pthread_create(&thread, &attr, func, arg)) { fprintf(stderr, "Can't create thread: %s\n", strerror(ret)); exit(1); }}/* * Pulls a conn structure from the freelist, if one is available. */conn *mt_conn_from_freelist() { conn *c; pthread_mutex_lock(&conn_lock); c = do_conn_from_freelist(); pthread_mutex_unlock(&conn_lock); return c;}/* * Adds a conn structure to the freelist. * * Returns 0 on success, 1 if the structure couldn't be added. */int mt_conn_add_to_freelist(conn *c) { int result; pthread_mutex_lock(&conn_lock); result = do_conn_add_to_freelist(c); pthread_mutex_unlock(&conn_lock); return result;}/****************************** LIBEVENT THREADS *****************************//* * Set up a thread's information. */static void setup_thread(LIBEVENT_THREAD *me) { if (! me->base) { me->base = event_init(); if (! me->base) { fprintf(stderr, "Can't allocate event base\n"); exit(1); } } /* Listen for notifications from other threads */ event_set(&me->notify_event, me->notify_receive_fd, EV_READ | EV_PERSIST, thread_libevent_process, me); event_base_set(me->base, &me->notify_event); if (event_add(&me->notify_event, 0) == -1) { fprintf(stderr, "Can't monitor libevent notify pipe\n"); exit(1); } cq_init(&me->new_conn_queue);}/* * Worker thread: main event loop */static void *worker_libevent(void *arg) { LIBEVENT_THREAD *me = arg; /* Any per-thread setup can happen here; thread_init() will block until * all threads have finished initializing. */ pthread_mutex_lock(&init_lock); init_count++; pthread_cond_signal(&init_cond); pthread_mutex_unlock(&init_lock); event_base_loop(me->base, 0);}/* * Processes an incoming "handle a new connection" item. This is called when * input arrives on the libevent wakeup pipe. */static void thread_libevent_process(int fd, short which, void *arg) { LIBEVENT_THREAD *me = arg; CQ_ITEM *item; char buf[1]; if (read(fd, buf, 1) != 1) if (settings.verbose > 0) fprintf(stderr, "Can't read from libevent pipe\n"); if (item = cq_peek(&me->new_conn_queue)) { conn *c = conn_new(item->sfd, item->init_state, item->event_flags, item->read_buffer_size, item->is_udp, me->base); if (!c) { if (item->is_udp) { fprintf(stderr, "Can't listen for events on UDP socket\n"); exit(1); } else { if (settings.verbose > 0) { fprintf(stderr, "Can't listen for events on fd %d\n", item->sfd); } close(item->sfd); } } cqi_free(item); }}/* Which thread we assigned a connection to most recently. */static int last_thread = -1;/* * Dispatches a new connection to another thread. This is only ever called * from the main thread, either during initialization (for UDP) or because * of an incoming connection. */void dispatch_conn_new(int sfd, int init_state, int event_flags, int read_buffer_size, int is_udp) { CQ_ITEM *item = cqi_new(); int thread = (last_thread + 1) % settings.num_threads; last_thread = thread; item->sfd = sfd; item->init_state = init_state; item->event_flags = event_flags; item->read_buffer_size = read_buffer_size; item->is_udp = is_udp; cq_push(&threads[thread].new_conn_queue, item); if (write(threads[thread].notify_send_fd, "", 1) != 1) { perror("Writing to thread notify pipe"); }}/* * Returns true if this is the thread that listens for new TCP connections. */int mt_is_listen_thread() { return pthread_self() == threads[0].thread_id;}/********************************* ITEM ACCESS *******************************//* * Walks through the list of deletes that have been deferred because the items * were locked down at the tmie. */void mt_run_deferred_deletes() { pthread_mutex_lock(&cache_lock); do_run_deferred_deletes(); pthread_mutex_unlock(&cache_lock);}/* * Allocates a new item. */item *mt_item_alloc(char *key, size_t nkey, int flags, rel_time_t exptime, int nbytes) { item *it; pthread_mutex_lock(&cache_lock); it = do_item_alloc(key, nkey, flags, exptime, nbytes); pthread_mutex_unlock(&cache_lock); return it;}/* * Returns an item if it hasn't been marked as expired or deleted, * lazy-expiring as needed. */item *mt_item_get_notedeleted(char *key, size_t nkey, bool *delete_locked) { item *it; pthread_mutex_lock(&cache_lock); it = do_item_get_notedeleted(key, nkey, delete_locked); pthread_mutex_unlock(&cache_lock); return it;}/* * Returns an item whether or not it's been marked as expired or deleted. */item *mt_item_get_nocheck(char *key, size_t nkey) { item *it; pthread_mutex_lock(&cache_lock); it = assoc_find(key, nkey); it->refcount++; pthread_mutex_unlock(&cache_lock); return it;}/* * Links an item into the LRU and hashtable. */int mt_item_link(item *item) { int ret; pthread_mutex_lock(&cache_lock); ret = do_item_link(item); pthread_mutex_unlock(&cache_lock); return ret;}/* * Decrements the reference count on an item and adds it to the freelist if * needed. */void mt_item_remove(item *item) { pthread_mutex_lock(&cache_lock); do_item_remove(item); pthread_mutex_unlock(&cache_lock);}/* * Replaces one item with another in the hashtable. */int mt_item_replace(item *old, item *new) { int ret; pthread_mutex_lock(&cache_lock); ret = do_item_replace(old, new); pthread_mutex_unlock(&cache_lock); return ret;}/* * Unlinks an item from the LRU and hashtable. */void mt_item_unlink(item *item) { pthread_mutex_lock(&cache_lock); do_item_unlink(item); pthread_mutex_unlock(&cache_lock);}/* * Moves an item to the back of the LRU queue. */void mt_item_update(item *item) { pthread_mutex_lock(&cache_lock); do_item_update(item); pthread_mutex_unlock(&cache_lock);}/* * Adds an item to the deferred-delete list so it can be reaped later. */char *mt_defer_delete(item *item, time_t exptime) { char *ret; pthread_mutex_lock(&cache_lock); ret = do_defer_delete(item, exptime); pthread_mutex_unlock(&cache_lock); return ret;}/* * Does arithmetic on a numeric item value. */char *mt_add_delta(item *item, int incr, unsigned int delta, char *buf) { char *ret; pthread_mutex_lock(&cache_lock); ret = do_add_delta(item, incr, delta, buf); pthread_mutex_unlock(&cache_lock); return ret;}/* * Stores an item in the cache (high level, obeys set/add/replace semantics) */int mt_store_item(item *item, int comm) { int ret; pthread_mutex_lock(&cache_lock); ret = do_store_item(item, comm); pthread_mutex_unlock(&cache_lock); return ret;}/* * Flushes expired items after a flush_all call */void mt_item_flush_expired() { pthread_mutex_lock(&cache_lock); do_item_flush_expired(); pthread_mutex_unlock(&cache_lock);}/****************************** HASHTABLE MODULE *****************************/void mt_assoc_move_next_bucket() { pthread_mutex_lock(&cache_lock); do_assoc_move_next_bucket(); pthread_mutex_unlock(&cache_lock);}/******************************* SLAB ALLOCATOR ******************************/void *mt_slabs_alloc(size_t size) { void *ret; pthread_mutex_lock(&slabs_lock); ret = do_slabs_alloc(size); pthread_mutex_unlock(&slabs_lock); return ret;}void mt_slabs_free(void *ptr, size_t size) { pthread_mutex_lock(&slabs_lock); do_slabs_free(ptr, size); pthread_mutex_unlock(&slabs_lock);}char *mt_slabs_stats(int *buflen) { char *ret; pthread_mutex_lock(&slabs_lock); ret = do_slabs_stats(buflen); pthread_mutex_unlock(&slabs_lock); return ret;}#ifdef ALLOW_SLABS_REASSIGNint mt_slabs_reassign(unsigned char srcid, unsigned char dstid) { int ret; pthread_mutex_lock(&slabs_lock); ret = do_slabs_reassign(srcid, dstid); pthread_mutex_unlock(&slabs_lock); return ret;}#endif/******************************* GLOBAL STATS ******************************/void mt_stats_lock() { pthread_mutex_lock(&stats_lock);}void mt_stats_unlock() { pthread_mutex_unlock(&stats_lock);}/* * Initializes the thread subsystem, creating various worker threads. * * nthreads Number of event handler threads to spawn * main_base Event base for main thread */void thread_init(int nthreads, struct event_base *main_base) { int i; pthread_t *thread; pthread_mutex_init(&cache_lock, NULL); pthread_mutex_init(&conn_lock, NULL); pthread_mutex_init(&slabs_lock, NULL); pthread_mutex_init(&stats_lock, NULL); pthread_mutex_init(&init_lock, NULL); pthread_cond_init(&init_cond, NULL); pthread_mutex_init(&cqi_freelist_lock, NULL); cqi_freelist = NULL; threads = malloc(sizeof(LIBEVENT_THREAD) * nthreads); if (! threads) { perror("Can't allocate thread descriptors"); exit(1); } threads[0].base = main_base; threads[0].thread_id = pthread_self(); for (i = 0; i < nthreads; i++) { int fds[2]; if (pipe(fds)) { perror("Can't create notify pipe"); exit(1); } threads[i].notify_receive_fd = fds[0]; threads[i].notify_send_fd = fds[1]; setup_thread(&threads[i]); } /* Create threads after we've done all the libevent setup. */ for (i = 1; i < nthreads; i++) { create_worker(worker_libevent, &threads[i]); } /* Wait for all the threads to set themselves up before returning. */ pthread_mutex_lock(&init_lock); init_count++; // main thread while (init_count < nthreads) { pthread_cond_wait(&init_cond, &init_lock); } pthread_mutex_unlock(&init_lock);}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -