📄 linux 汇编语言开发指南 - 21ic中国电子网.htm
字号:
<P align=center>
<TABLE cellSpacing=0 borderColorDark=#d9d9d9 cellPadding=2
borderColorLight=#000000 border=1>
<TBODY>
<TR>
<TD align=middle width=200 bgColor=#d9d9d9><B>AT&T 格式</B></TD>
<TD align=middle width=200 bgColor=#d9d9d9><B>Intel 格式</B></TD></TR>
<TR>
<TD>ljump $section, $offset</TD>
<TD width=200>jmp far section:offset</TD></TR>
<TR>
<TD>lcall $section, $offset</TD>
<TD width=200>call far section:offset</TD></TR></TBODY></TABLE></P>
<P>与之相应的远程返回指令则为:</P>
<P align=center>
<TABLE cellSpacing=0 borderColorDark=#d9d9d9 cellPadding=2
borderColorLight=#000000 border=1>
<TBODY>
<TR>
<TD align=middle width=200 bgColor=#d9d9d9><B>AT&T 格式</B></TD>
<TD align=middle width=200 bgColor=#d9d9d9><B>Intel 格式</B></TD></TR>
<TR>
<TD>lret $stack_adjust</TD>
<TD width=200>ret far stack_adjust</TD></TR></TBODY></TABLE></P>
<LI>
<P>在 AT&T 汇编格式中,内存操作数的寻址方式是</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1>
<TBODY>
<TR>
<TD><PRE><CODE>
section:disp(base, index, scale)
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>而在 Intel 汇编格式中,内存操作数的寻址方式为:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1>
<TBODY>
<TR>
<TD><PRE><CODE>
section:[base + index*scale + disp]
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>由于 Linux 工作在保护模式下,用的是 32 位线性地址,所以在计算地址时不用考虑段基址和偏移量,而是采用如下的地址计算方法:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1>
<TBODY>
<TR>
<TD><PRE><CODE>
disp + base + index * scale
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>下面是一些内存操作数的例子:</P>
<P align=center>
<TABLE cellSpacing=0 borderColorDark=#d9d9d9 cellPadding=2
borderColorLight=#000000 border=1>
<TBODY>
<TR>
<TD align=middle width=200 bgColor=#d9d9d9><B>AT&T 格式</B></TD>
<TD align=middle width=200 bgColor=#d9d9d9><B>Intel 格式</B></TD></TR>
<TR>
<TD>movl -4(%ebp), %eax</TD>
<TD width=200>mov eax, [ebp - 4]</TD></TR>
<TR>
<TD>movl array(, %eax, 4), %eax</TD>
<TD width=200>mov eax, [eax*4 + array]</TD></TR>
<TR>
<TD>movw array(%ebx, %eax, 4), %cx</TD>
<TD width=200>mov cx, [ebx + 4*eax + array]</TD></TR>
<TR>
<TD>movb $4, %fs:(%eax)</TD>
<TD width=200>mov fs:eax, 4</TD></TR></TBODY></TABLE></P></LI></OL>
<P></P>
<P><A name=2><SPAN class=atitle2>三、Hello World!</SPAN></A></P>
<P>真不知道打破这个传统会带来什么样的后果,但既然所有程序设计语言的第一个例子都是在屏幕上打印一个字符串 "Hello
World!",那我们也以这种方式来开始介绍 Linux 下的汇编语言程序设计。</P>
<P>在 Linux 操作系统中,你有很多办法可以实现在屏幕上显示一个字符串,但最简洁的方式是使用 Linux
内核提供的系统调用。使用这种方法最大的好处是可以直接和操作系统的内核进行通讯,不需要链接诸如 libc 这样的函数库,也不需要使用 ELF
解释器,因而代码尺寸小且执行速度快。</P>
<P>Linux 是一个运行在保护模式下的 32 位操作系统,采用 flat memory 模式,目前最常用到的是 ELF 格式的二进制代码。一个
ELF 格式的可执行程序通常划分为如下几个部分:.text、.data 和 .bss,其中 .text 是只读的代码区,.data
是可读可写的数据区,而 .bss 则是可读可写且没有初始化的数据区。代码区和数据区在 ELF 中统称为
section,根据实际需要你可以使用其它标准的 section,也可以添加自定义 section,但一个 ELF 可执行程序至少应该有一个
.text 部分。下面给出我们的第一个汇编程序,用的是 AT&T 汇编语言格式:</P>
<P>例1. AT&T 格式</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
#hello.s
.data # 数据段声明
msg : .string "Hello, world!\\n" # 要输出的字符串
len = . - msg # 字串长度
.text # 代码段声明
.global _start # 指定入口函数
_start: # 在屏幕上显示一个字符串
movl $len, %edx # 参数三:字符串长度
movl $msg, %ecx # 参数二:要显示的字符串
movl $1, %ebx # 参数一:文件描述符(stdout)
movl $4, %eax # 系统调用号(sys_write)
int $0x80 # 调用内核功能
# 退出程序
movl $0,%ebx # 参数一:退出代码
movl $1,%eax # 系统调用号(sys_exit)
int $0x80 # 调用内核功能
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>初次接触到 AT&T 格式的汇编代码时,很多程序员都认为太晦涩难懂了,没有关系,在 Linux 平台上你同样可以使用 Intel
格式来编写汇编程序:</P>
<P>例2. Intel 格式</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
; hello.asm
section .data ; 数据段声明
msg db "Hello, world!", 0xA ; 要输出的字符串
len equ $ - msg ; 字串长度
section .text ; 代码段声明
global _start ; 指定入口函数
_start: ; 在屏幕上显示一个字符串
mov edx, len ; 参数三:字符串长度
mov ecx, msg ; 参数二:要显示的字符串
mov ebx, 1 ; 参数一:文件描述符(stdout)
mov eax, 4 ; 系统调用号(sys_write)
int 0x80 ; 调用内核功能
; 退出程序
mov ebx, 0 ; 参数一:退出代码
mov eax, 1 ; 系统调用号(sys_exit)
int 0x80 ; 调用内核功能
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>上面两个汇编程序采用的语法虽然完全不同,但功能却都是调用 Linux 内核提供的 sys_write 来显示一个字符串,然后再调用
sys_exit 退出程序。在 Linux 内核源文件 include/asm-i386/unistd.h 中,可以找到所有系统调用的定义。</P>
<P><A name=3><SPAN class=atitle2>四、Linux 汇编工具</SPAN></A></P>
<P>Linux 平台下的汇编工具虽然种类很多,但同 DOS/Windows 一样,最基本的仍然是汇编器、连接器和调试器。</P>
<P><B>1.汇编器</B></P>
<P>汇编器(assembler)的作用是将用汇编语言编写的源程序转换成二进制形式的目标代码。Linux 平台的标准汇编器是 GAS,它是 GCC
所依赖的后台汇编工具,通常包含在 binutils 软件包中。GAS 使用标准的 AT&T 汇编语法,可以用来汇编用 AT&T
格式编写的程序:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
[xiaowp@gary code]$ as -o hello.o hello.s
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>Linux 平台上另一个经常用到的汇编器是 NASM,它提供了很好的宏指令功能,并能够支持相当多的目标代码格式,包括
bin、a.out、coff、elf、rdf 等。NASM 采用的是人工编写的语法分析器,因而执行速度要比 GAS 快很多,更重要的是它使用的是
Intel 汇编语法,可以用来编译用 Intel 语法格式编写的汇编程序:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
[xiaowp@gary code]$ nasm -f elf hello.asm
</CODE></PRE></TD></TR></TBODY></TABLE>
<P><B>2.链接器</B></P>
<P>由汇编器产生的目标代码是不能直接在计算机上运行的,它必须经过链接器的处理才能生成可执行代码。链接器通常用来将多个目标代码连接成一个可执行代码,这样可以先将整个程序分成几个模块来单独开发,然后才将它们组合(链接)成一个应用程序。
Linux 使用 ld 作为标准的链接程序,它同样也包含在 binutils 软件包中。汇编程序在成功通过 GAS 或 NASM
的编译并生成目标代码后,就可以使用 ld 将其链接成可执行程序了:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
[xiaowp@gary code]$ ld -s -o hello hello.o
</CODE></PRE></TD></TR></TBODY></TABLE>
<P><B>3.调试器</B></P>
<P>有人说程序不是编出来而是调出来的,足见调试在软件开发中的重要作用,在用汇编语言编写程序时尤其如此。Linux 下调试汇编代码既可以用
GDB、DDD 这类通用的调试器,也可以使用专门用来调试汇编代码的 ALD(Assembly Language Debugger)。</P>
<P>从调试的角度来看,使用 GAS 的好处是可以在生成的目标代码中包含符号表(symbol table),这样就可以使用 GDB 和 DDD
来进行源码级的调试了。要在生成的可执行程序中包含符号表,可以采用下面的方式进行编译和链接:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
[xiaowp@gary code]$ as --gstabs -o hello.o hello.s
[xiaowp@gary code]$ ld -o hello hello.o
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>执行 as 命令时带上参数 --gstabs 可以告诉汇编器在生成的目标代码中加上符号表,同时需要注意的是,在用 ld 命令进行链接时不要加上
-s 参数,否则目标代码中的符号表在链接时将被删去。</P>
<P>在 GDB 和 DDD 中调试汇编代码和调试 C
语言代码是一样的,你可以通过设置断点来中断程序的运行,查看变量和寄存器的当前值,并可以对代码进行单步跟踪。图1 是在 DDD
中调试汇编代码时的情景:</P>
<P align=center><IMG onmousewheel="return bbimg(this)"
onclick=ImgClick(this)
src="Linux 汇编语言开发指南 - 21IC中国电子网.files/050109014193841.jpg"
resized="0"><BR>图1 用 DDD 中调试汇编程序</P>
<P>汇编程序员通常面对的都是一些比较苛刻的软硬件环境,短小精悍的ALD可能更能符合实际的需要,因此下面主要介绍一下如何用ALD来调试汇编程序。首先在命令行方式下执行ald命令来启动调试器,该命令的参数是将要被调试的可执行程序:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
[xiaowp@gary doc]$ ald hello
Assembly Language Debugger 0.1.3
Copyright (C) 2000-2002 Patrick Alken
hello: ELF Intel 80386 (32 bit), LSB, Executable, Version 1 (current)
Loading debugging symbols...(15 symbols loaded)
ald>
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>当 ALD 的提示符出现之后,用 disassemble 命令对代码段进行反汇编:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
ald> disassemble -s .text
Disassembling section .text (0x08048074 - 0x08048096)
08048074 BA0F000000 mov edx, 0xf
08048079 B998900408 mov ecx, 0x8049098
0804807E BB01000000 mov ebx, 0x1
08048083 B804000000 mov eax, 0x4
08048088 CD80 int 0x80
0804808A BB00000000 mov ebx, 0x0
0804808F B801000000 mov eax, 0x1
08048094 CD80 int 0x80
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>上述输出信息的第一列是指令对应的地址码,利用它可以设置在程序执行时的断点:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
ald> break 0x08048088
Breakpoint 1 set for 0x08048088
</CODE></PRE></TD></TR></TBODY></TABLE>
<P>断点设置好后,使用 run 命令开始执行程序。ALD 在遇到断点时将自动暂停程序的运行,同时会显示所有寄存器的当前值:</P>
<TABLE cellSpacing=0 cellPadding=5 width="100%" bgColor=#cccccc
border=1><TBODY>
<TR>
<TD><PRE><CODE>
ald> run
Starting program: hello
Breakpoint 1 encountered at 0x08048088
eax = 0x00000004 ebx = 0x00000001 ecx = 0x08049098 edx = 0x0000000F
esp = 0xBFFFF6C0 ebp = 0x00000000 esi = 0x00000000 edi = 0x00000000
ds = 0x0000002B es = 0x0000002B fs = 0x00000000 gs = 0x00000000
ss = 0x0000002B cs = 0x00000023 eip = 0x08048088 eflags = 0x00000246
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -