📄 fmd.cpp
字号:
NF_CE_H();
RELEASEMUTEX();
return bRet;
}
// FMD_WriteSector
//
// Write dwNumPages pages to the startSectorAddr
//
BOOL FMD_WriteSector(SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff, PSectorInfo pSectorInfoBuff,
DWORD dwNumSectors)
{
DWORD i;
BOOL bRet = TRUE;
// DWORD dwECCVal;
volatile WORD wrdata;
DWORD Mecc0, Mecc1;
int NewSpareAddr = (512+16)/sizeof(WORD)*(startSectorAddr%4) + 512/sizeof(WORD);
int NewDataAddr = (512+16)/sizeof(WORD)*(startSectorAddr%4);
int NewSectorAddr = startSectorAddr/4;
DEBUGMSG(1, (TEXT("FMD_WriteSector_IN %x!\n"),startSectorAddr));
#ifdef BOOT_LOADER
// EdbgOutputDebugString("FlashDrv!FMD!FMD_WriteSector: 0x%x \r\n", startSectorAddr);
#endif
// Sanity check
// BUGBUGBUG: I need to come back to support dwNumSectors > 1
//
if((!pSectorBuff && !pSectorInfoBuff) || dwNumSectors != 1) {
#ifdef BOOT_LOADER
EdbgOutputDebugString("Invalid parameters!\r\n");
#else
RETAILMSG(1, (TEXT("Invalid parameters!\n")));
#endif
#ifndef NOSYSCALL
SetLastError(ERROR_INVALID_PARAMETER);
#endif
return FALSE;
}
NF_Reset();
if(!pSectorBuff) {
// If we are asked just to write the SectorInfo, we will do that separately
bRet = NAND_WriteSectorInfo(startSectorAddr, pSectorInfoBuff);
return bRet; // Do not write the actual sector information...
}
GRABMUTEX();
//s24A0IOP->rGPCON_L=(s24A0IOP->rGPCON_L & ~(0x3<<2))|(0x1<<2);// Setting as OUTPUT Mode
//s24A0IOP->rGPDAT |=(1<<1);
// Initialize ECC register
NF_RSTECC();
NF_MECC_UnLock();
// Enable Chip
NF_CE_L();
// Issue command
NF_CMD(CMD_WRITE);
// Setup address
NF_ADDR((NewDataAddr)&0xff);
NF_ADDR(((NewDataAddr)>>8)&0xff);
NF_ADDR((NewSectorAddr) & 0xff);
NF_ADDR((NewSectorAddr >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((NewSectorAddr >> 16) & 0xff);
}
// Special case to handle un-aligned buffer pointer.
//
if( ((DWORD) pSectorBuff) & 0x3) {
// Write the data
for(i=0; i<SECTOR_SIZE/sizeof(WORD); i++) {
wrdata = pSectorBuff[i*2+0];
wrdata |= pSectorBuff[i*2+1]<<8;
NF_DATA_W2(wrdata);
}
}
else {
WritePage512(pSectorBuff, pNFDATA);
// DWORD *bufPt=(DWORD *)pSectorBuff;
// for(i=0;i<128;i++) {
// EdbgOutputDebugString("W: *bufPt = %x \r\n", *bufPt);
// NF_DATA_W4(*bufPt++); // Write one page to NFM from buffer
// }
}
// Read out the ECC value generated by HW
NF_MECC_Lock();
Mecc0 = READ_REGISTER_ULONG(pNFMECC0);
Mecc1 = READ_REGISTER_ULONG(pNFMECC1);
// EdbgOutputDebugString("FMD: WriteSector : pNFMECCD0: %x \r\n", Mecc0);
// EdbgOutputDebugString("FMD: WriteSector : pNFMECCD1: %x \r\n", Mecc1);
// Write the SectorInfo data to the media
// NOTE: This hardware is odd: only a byte can be written at a time and it must reside in the
// upper byte of a USHORT.
if(pSectorInfoBuff)
{
// Write the first reserved field (DWORD)
NF_DATA_W2( (pSectorInfoBuff->dwReserved1) & 0xffff );
NF_DATA_W2( (pSectorInfoBuff->dwReserved1 >> 16) & 0xffff );
wrdata = (WORD)(pSectorInfoBuff->bOEMReserved) | (((WORD)(pSectorInfoBuff->bBadBlock) << 8)&0xff00);
NF_DATA_W2( wrdata );
NF_DATA_W2(pSectorInfoBuff->wReserved2);
}else
{
// Make sure we advance the Flash's write pointer (even though we aren't writing the SectorInfo data)
for(i=0; i<sizeof(SectorInfo)/sizeof(WORD); i++)
{
NF_DATA_W2(0xffff);
}
}
// EdbgOutputDebugString("FMD: WriteSector : pNFMECCD0: %x \r\n", Mecc0);
// EdbgOutputDebugString("FMD: WriteSector : pNFMECCD1: %x \r\n", Mecc1);
// Write the ECC value to the flash
NF_DATA_W2((WORD)((Mecc0) & 0xff) | (WORD)((Mecc1<<8) & 0xff00));
NF_DATA_W2((WORD)((Mecc0>>8) & 0xff) | (WORD)((Mecc1) & 0xff00));
NF_DATA_W2((WORD)((Mecc0>>16) & 0xff) | (WORD)((Mecc1>>8) & 0xff00));
NF_DATA_W2((WORD)((Mecc0>>24) & 0xff) | (WORD)((Mecc1>>16) & 0xff00));
NF_CLEAR_RB();
// Finish up the write operation
NF_CMD(CMD_WRITE2);
// Wait for RB
NF_DETECT_RB(); // Wait tR(max 12us)
// Check the status
NF_CMD(CMD_STATUS);
if(NF_DATA_R2() & STATUS_ERROR) {
#ifdef BOOT_LOADER
EdbgOutputDebugString("FMD_WriteSector() ######## Error Programming page %d!\r\n", startSectorAddr);
#else
RETAILMSG(1, (TEXT("FMD_WriteSector() ######## Error Programming page %d!\n"), startSectorAddr));
#endif
//s24A0IOP->rGPCON_L = (s24A0IOP->rGPCON_L & ~(0x3<<2))|(0x3<<2); //$ Set RTC_ALMINT
bRet = FALSE;
}
// Disable the chip
NF_CE_H();
//s24A0IOP->rGPCON_L = (s24A0IOP->rGPCON_L & ~(0x3<<2))|(0x3<<2); //$ Set RTC_ALMINT
RELEASEMUTEX();
return bRet;
}
/*
* MarkBlockBad
*
* Mark the block as a bad block. We need to write a 00 to the 517th byte
*/
BOOL MarkBlockBad(BLOCK_ID blockID)
{
DWORD dwStartPage = blockID << LOG_2_PAGES_PER_BLOCK;
BOOL bRet = TRUE;
#ifdef BOOT_LOADER
// EdbgOutputDebugString("MarkBlockBad 0x%x \r\n", dwStartPage);
#endif
GRABMUTEX();
// Enable chip
NF_CE_L();
NF_CLEAR_RB();
// Issue command
// We are dealing with spare area
NF_CMD(CMD_WRITE);
// Set up address
NF_ADDR((256+VALIDADDR/sizeof(WORD))&0xff);
NF_ADDR(((256+VALIDADDR/sizeof(WORD))>>8)&0xff);
NF_ADDR((dwStartPage) & 0xff);
NF_ADDR((dwStartPage >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((dwStartPage >> 16) & 0xff);
}
NF_DATA_W2(BADBLOCKMARK);
// Copmlete the write
NF_CMD(CMD_WRITE2);
// Wait for RB
NF_DETECT_RB(); // Wait tR(max 12us)
//for(int i=0;i<10;i++);
// Get the status
NF_CMD(CMD_STATUS);
if(NF_DATA_R2() & STATUS_ERROR) {
RETAILMSG(1, (TEXT("######## Failed to mark the block bad!\n")));
bRet = FALSE;
}
// Disable chip select
NF_CE_H();
RELEASEMUTEX();
return bRet;
}
//
// FMD_SetBlockStatus
//
// Sets the status of a block. Only implement for bad blocks for now.
// Returns TRUE if no errors in setting.
//
BOOL FMD_SetBlockStatus(BLOCK_ID blockID, DWORD dwStatus)
{
SECTOR_ADDR sectorAddr = blockID << LOG_2_PAGES_PER_BLOCK;
BYTE bStatus = 0;
#ifdef BOOT_LOADER
// EdbgOutputDebugString("FMD_SetBlockStatus 0x%x \r\n", sectorAddr);
#endif
if(dwStatus & BLOCK_STATUS_BAD)
{
if(!MarkBlockBad (blockID))
{
return FALSE;
}
}
// We don't currently support setting a block to read-only, so fail if request is
// for read-only and block is not currently read-only.
if(dwStatus & BLOCK_STATUS_READONLY)
{
if(!(FMD_GetBlockStatus(blockID) & BLOCK_STATUS_READONLY))
{
return FALSE;
}
}
return TRUE;
}
#ifndef NOSYSCALL
// We don't have to build the following interface functions for the
// bootloader.
//
// FMD_PowerUp
//
// Performs any necessary powerup procedures...
//
VOID FMD_PowerUp(VOID)
{
// Reinit the NAND controller
GRABMUTEX();
s24A0SROM->rSROM_BW |=(1<<9);
WRITE_REGISTER_ULONG(pNFCONF, (1<<22)|(TECH<<16)|(TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<3)|(1<<2)|(0<<1)|(1<<0));
WRITE_REGISTER_ULONG(pNFCONT, (0<<16)|(0<<15)|(0<<14)|(0<<13)|(0<<12)|(0<<11)|(1<<10)|(1<<9)|\
(0<<8)|(1<<7)|(0<<4)|(0<<3)|(0<<2)|(3<<0));
RELEASEMUTEX();
// Reset the controller
//NF_Reset();
#ifdef CEDAR_ONLY
// ++ CE 3.0 Specific Code. Not needed for 4.x +
SetInterruptEvent(SYSINTR_POWERON);
// -- CE 3.0 Specific Code. Not needed for 4.x +
#endif // CEDAR_ONLY
}
// FMD_PowerDown
//
// Performs any necessary powerdown procedures...
//
VOID FMD_PowerDown(VOID)
{
RETAILMSG(1, (TEXT("FMD_Powerdown\r\n")));
}
// FMD_OEMIoControl
//
// Used for any OEM defined IOCTL operations
//
BOOL FMD_OEMIoControl(DWORD dwIoControlCode, PBYTE pInBuf, DWORD nInBufSize,
PBYTE pOutBuf, DWORD nOutBufSize, PDWORD pBytesReturned)
{
DEBUGMSG(1, (TEXT("FMD_OEMIoControl\r\n")));
switch(dwIoControlCode)
{
case IOCTL_FMD_UPDATEXIP_BEGIN:
g_bTakeMutex = TRUE;
break;
case IOCTL_FMD_UPDATEXIP_END:
g_bTakeMutex = FALSE;
break;
default:
RETAILMSG(1, (TEXT("FMD::FMD_OEMIoControl = 0x%x\n"), dwIoControlCode));
return FALSE;
}
return TRUE;
}
#endif // NOSYSCALL
//------------------------------- Private Interface (NOT used by the FAL) --------------------------
// FMD_GetOEMReservedByte
//
// Retrieves the OEM reserved byte (for metadata) for the specified physical sector.
//
//
BOOL FMD_GetOEMReservedByte(SECTOR_ADDR physicalSectorAddr, PBYTE pOEMReserved)
{
int NewSpareAddr = (512+16)/sizeof(WORD)*(physicalSectorAddr%4) + 512/sizeof(WORD);
int NewDataAddr = (512+16)/sizeof(WORD)*(physicalSectorAddr%4);
int NewSectorAddr = physicalSectorAddr/4;
#ifdef BOOT_LOADER
EdbgOutputDebugString("FMD_GetOEMReservedByte 0x%x \r\n", physicalSectorAddr);
#else
#endif
GRABMUTEX();
// Enable chip select
NF_CE_L();
NF_CLEAR_RB();
// Issue command
NF_CMD(CMD_READ);
// Set up address
// NF_ADDR(OEMADDR);
NF_ADDR((256+OEMADDR/sizeof(WORD))&0xff);
NF_ADDR(((256+OEMADDR/sizeof(WORD))>>8)&0xff);
NF_ADDR((NewSectorAddr) & 0xff);
NF_ADDR((NewSectorAddr >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((NewSectorAddr >> 16) & 0xff);
}
NF_CMD(0x30);
// Wait for the ready bit
NF_DETECT_RB(); // Wait tR(max 12us)
// Read the data
*pOEMReserved = (BYTE) (NF_DATA_R2()&0xff); // read and discard
// Disable chip select
NF_CE_H();
RELEASEMUTEX();
return TRUE;
}
// FMD_SetOEMReservedByte
//
// Sets the OEM reserved byte (for metadata) for the specified physical sector.
//
BOOL FMD_SetOEMReservedByte(SECTOR_ADDR physicalSectorAddr, BYTE bOEMReserved)
{
BOOL bRet = TRUE;
int NewSpareAddr = (512+16)/sizeof(WORD)*(physicalSectorAddr%4) + 512/sizeof(WORD);
int NewDataAddr = (512+16)/sizeof(WORD)*(physicalSectorAddr%4);
int NewSectorAddr = physicalSectorAddr/4;
#ifdef BOOT_LOADER
EdbgOutputDebugString("FMD_SetOEMReservedByte 0x%x \r\n", physicalSectorAddr);
#else
#endif
GRABMUTEX();
// Enable chip select
NF_CE_L();
NF_CLEAR_RB();
// Issue command
NF_CMD(CMD_WRITE);
// Set up address
NF_ADDR((256+OEMADDR/sizeof(WORD))&0xff);
NF_ADDR(((256+OEMADDR/sizeof(WORD))>>8)&0xff);
NF_ADDR((NewSectorAddr) & 0xff);
NF_ADDR((NewSectorAddr >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((NewSectorAddr >> 16) & 0xff);
}
// Write the data
NF_DATA_W2(bOEMReserved);
// Complete the write
NF_CMD(CMD_WRITE2);
// Wait for the ready bit
NF_DETECT_RB(); // Wait tR(max 12us)
// Read the status
NF_CMD(CMD_STATUS);
// Check the status
if(NF_DATA_R2() & STATUS_ERROR) {
RETAILMSG(1, (TEXT("######## Failed to set OEM Reserved byte!\n")));
bRet = FALSE;
}
// Disable chip select
NF_CE_H();
RELEASEMUTEX();
return bRet;
}
//---------------------------------------- Helper Functions ----------------------------------------
// Interface function for testing purpose.
//
BOOL FMD_ReadSpare(DWORD dwStartPage, LPBYTE pBuff, DWORD dwNumPages)
{
#ifdef BOOT_LOADER
EdbgOutputDebugString("FMD_ReadSpare Not Support !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\r\n");
#else
RETAILMSG(1, (TEXT("FMD_ReadSpare Not Support !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\r\n")));
#endif
return FALSE;
}
void GRABMUTEX()
{
#ifdef NOSYSCALL
#ifndef BOOT_LOADER
// we're in the kernel - always SC_WaitForMultiple
SC_WaitForMultiple(1, &g_hMutex, TRUE, INFINITE);
#endif
#else
if (g_bTakeMutex) {
// we can do a normal WaitForSingleObject
WaitForSingleObject(g_hMutex, INFINITE);
}
#endif
}
void RELEASEMUTEX()
{
#ifdef NOSYSCALL
#ifndef BOOT_LOADER
SC_ReleaseMutex(g_hMutex);
#endif
#else
if (g_bTakeMutex) {
ReleaseMutex(g_hMutex);
}
#endif
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -