📄 gensetguide-format.html.svn-base
字号:
/** \page gensetGuide-format Choosing a Generating Set for OptGSS A generating set for <b>R<sup>n</sup></b> is a set of vectors that can generate any point in <b>R<sup>n</sup></b> by linear combinations with positive coefficients.<br>Currently, OPT++ contains three Generating Set Search options for OptGSS.The first two can be used for n-dimensional problems, whereasthe third is applicable only for two-dimensional problems.<hr><p><b>GenSetStd:</b><table cellpadding="10"><tr><td><img src="../images/gensetStd.gif"><td valign="top">The standard generating set has 2<b>n</b> elements andconsists of the columns of the identity matrix and its negative. <br><center>{I, -I}</center>The standard generating set gives rise to the well-known compass-search algorithm, which searches both sides of every Cartesian direction. </table><p> <b>GenSetMin:</b><table cellpadding="10"><tr><td><img src="../images/gensetMin.gif"><td valign="top">A generating set for <b>R<sup>n</sup></b> mustcontain at least <b>n</b>+1 elements. The standard minimal generating set consists of the columns of the identity matrix plus the vector with all entries equal to -1.<br><center>{I, -1}</center>The standard minimal generating set is useful for problems with expensive function evaluations.</table><p><b>GenSetBox2d:</b><table cellspacing="2" cellpadding="10"><tr><td><img src="../images/gensetBox.gif"><td valign="top">The Box generating set augments the standard generating setwith the corners of a <b>n</b> dimensional hypercube (or "box").In OPT++, the Box generating set has been implemented for <b>n</b>=2,where the corner vectors are <br><center>{(1,1), (-1,1), (-1,-1), (1,-1)}.</center>This generating set can be used instead of the standard set fortwo dimensional problems with inexpensive function evaluations.The additional directions can significantly improve the algorithm'sconvergence rate.</table><hr><p><b>References:</b> <br><ol><li> T. Kolda, R. Lewis, V. Torczon.<i>Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods.</i> SIAM REVIEW Vol. 45, No.3, pp.385-482. <p><li>A. G. Buckley and H. Ma, <i>A Derivative-Free Algorithm for Parallel and Sequential Optimization,</i> Technical Report, Computer Science Department, University of Victoria, BC, Canada, 1994. </li></ol><p> <a href="tstgss.html">Next Section: Optimization Methods </a> |<a href="index.html">Back to Main Page</a> </p> Last revised <em> July 13, 2006 </em> */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -