⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 referencesdoc.html.svn-base

📁 OPT++
💻 SVN-BASE
字号:
/** \page ReferencesDoc References    <p>    <a name="Argaez1"></a> M. Argaez and R. A. Tapia, On the Global    Convergence of a Modified Augmented Lagrangian Linesearch    Interior-Point Newton Method for Nonlinear Programming,    <em>Journal of Optimization Theory and Applications,</em>    Vol. 114, No. 1, 2001.    <a name="Argaez2"></a> M. Argaez, R. A. Tapia, and L. Velazquez,    Numerical Comparisons of Path-Following Strategies for a    Primal-Dual Interior-Point Method for Nonlinear Programming,    <em>Journal of Optimization Theory and Applications,</em>    Vol. 114, No. 2, 2002.    <a name="Averick"> B. M. Averick, R. G. Carter, J. J. More, and    G.-L. Xue, <em>The MINPACK-2 test problem collection,</em>    Preprint MCS-P153-0692, Mathematics and Computer Science Division,    Argonne National Laboratory, Argonne, Illinois, 1992.    <a name="Conn"></a> A. R. Conn, N. I. M. Gould, and Ph. L. Toint,    Convergence of quasi-Newton matrices generated by the symmetric    rank one update,<em> Mathematical Programming, </em> Vol. 50 pp.    177--195, 1991.    <a name="Davies"></a> R. B. Davies, <em> NEWMAT11: a matrix    manipulation library. </em> See http://www.robertnz.net.    <a name="Dennis"></a> J. E. Dennis, Jr. and R. B. Schnabel, <em>    Numerical Methods for Unconstrained Optimization and Nonlinear    Equations,</em> Prentice-Hall Inc., New Jersey, 1983.    <a name="Torczon"></a> J. E. Dennis, Jr. and V. Torczon, Direct    Search Methods on Parallel Machines, <em>SIAM    J. Optimization,</em> Vol. 1, No. 4, pp. 448--474, November 1991.    <a name="blas3"> J. J. Dongarra, J. Du Croz, I. S. Duff, and    S. Hammarling, A set of Level 3 Basic Linear Algebra Subprograms,    <em>ACM Trans. Math. Software,</em> Vol. 16, pp. 18--28,    1990.    <a name="blas2"> J. J. Dongarra, J. Du Croz, S. Hammarling, and    R. J. Hanson, An extended set of FORTRAN Basic Linear Algebra    Subprograms, <em> ACM Trans.  Math. Software,</em> Vol. 14,    pp. 1--17, 1988.    <a name="El-Bakry"></a> A. S. El-Bakry, R. A. Tapia, T. Tsuchiya    and Y. Zhang, On the Formulation and Theory of the Newton    Interior-Point Method for Nonlinear Programming, <em> Journal of    Optimization Theory and Applications,</em> Vol. 89, pp. 507--541,    1996.    <a name="El-Bakry2"></a> A. S. El-Bakry, R. A. Tapia, and    Y. Zhang, A Study of Indicators for Identifying Zero Variables in    Interior-Point Methods, <em> SIAM Review, </em> Vol. 36, No. 1,    pp. 45--72, 1994.    <a name="Facchinei"></a> F. Facchinei, A. Fischer, and C. Kanzow,    On the Accurate Identification of Active Constraints, <em> SIAM    J. Optimization, </em> Vol. 9, No. 1, pp. 14--32, 1998.    <a name="Gill"></a> P. E. Gill, W. Murray, M. A. Saunders, and    M. H. Wright, <em>User's Guide for NPSOL(Version 4.0): A Fortran    Package for Nonlinear Programming,</em> Technical Report SOL-86-2,    System Optimization Laboratory, Stanford University, Stanford, CA,    1986.    <a name="Gill2"></a> P. E. Gill, W. Murray, and M. H. Wright, <em>    Practical Optimization </em>, Academic Press, London, 1981.    <a name="Goldsmith"></a> M. J. Goldsmith, <em>Sequential Quadratic    Programming Methods Based on Indefinite Hessian Approximations,    </em> Ph.D. Thesis, Department of Operations Research, Stanford    University, Palo Alto, CA, March 1999.    <a name="Hock"></a> W. Hock and K. Schittkowski, <em> Test    examples for nonlinear programming code,</em> Springer Verlag, New    York, 1981.    <a name="Hough"></a> P. D. Hough and J. C. Meza, A Class of    Trust-Region Methods for Parallel Optimization, <em>SIAM    J. Optimization,</em> Vol. 13, No. 1, pp. 264--282, 2002.    <a name="Howle"></a> V. E. Howle, S. M. Shontz, and P. D. Hough,    <em>Some Parallel Extensions to Optimization Methods in OPT++    </em>, Sandia Technical Report SAND2000-8877, Sandia National    Laboratories, Livermore, CA, October 2000.    <a name="blas1"></a> C. L. Lawson, R. J. Hanson, D. Kincaid, and    F. T. Krogh, Basic Linear Algebra Subprograms for FORTRAN usage,    <em>ACM Trans. Math. Software, </em> Vol. 5 pp.  308--329,    1979.    <a name="lbfgs"></a> D. Liu and J. Nocedal, On the limited memory    BFGS method for large scale optimization, <em>Mathematical    Programming B,</em> Vol. 45, pp. 503-528, 1989.    <a name="Meza"></a> J. C. Meza, <em>OPT++: An Object-Oriented    Class Library for Nonlinear Optimization,</em> Sandia Technical    Report SAND94-8225, Sandia National Laboratories, Livermore, CA,    March 1994.    <a name="More"></a> J. More and D. Thuente, Line Search Algorithms    with Guaranteed Sufficient Decrease, <em> ACM Transactions on    Mathematical Software,</em> Vol. 20, No. 3, pp. 286--307,    1994.    <a name="Murray"></a> W. Murray and M. H. Wright, Line search    procedures for the logarithmic barrier function, <em>SIAM    J. Optimization,</em> Vol. 4, No. 2, pp. 229--246, 1994.    <a name="Pacheco"></a> P. S. Pacheco, <em> Parallel Programming    with MPI,</em> Morgan Kaufmann Publishers, Inc., San Francisco,    1997.    <!--    E. Polak and G. Ribiere, "Note sur la Convergence de Methodes de Directions Conjuguees", Revue Francaise d'Informatique et de Recherche Operationelle,        Serie Rouge, No. 16, 1969.     -->    <a name="Tapia"></a> R. A. Tapia, On the role of slack variables    in quasi-Newton methods for constrained optimization,    <em>Numerical Optimization of Dynamic Systems,</em> In    L. C. W. Dixon and G.P. Szego, eds., North Holland, pp. 235--246,    1980.    <a name="Vanderbei"></a> R. J. Vanderbei and D. Shanno, An    interior-point algorithm for nonconvex nonlinear programming, <em>    Computational Optimization and Applications,</em> Vol. 13,    pp. 231--259, 1999.</p> <p> Previous Section:  \ref FAQS | Back to the <a href="index.html">Main Page</a> </p>*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -