⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unconstrainedobject.html.svn-base

📁 OPT++
💻 SVN-BASE
字号:
/** \page UnconstrainedObject  Declaring objective functionsNonlinear programming problems are classified according to the availability ofderivative information.  The three categories <ul>	<li> NLP0 - no available derivative information,	<li> NLP1 - analytic first derivatives available, and	<li> NLP2 - analytic first and second derivatives available </ul>	The NLPX classes are abstract base classes for NLFX.Listed below are the constructors for the objective function. <ul><li> \codetypedef void (*USERFCN0)(int, const ColumnVector&, real&, int&);\endcodeIn the following code fragment, we show the calling sequence for a trigonometric function of dimension \a n. \code   trig(n, x, f, result);\endcodewhere \a x is the current point, \a f is the value of 	the objective function, and \a result is an output argument.<li> \codetypedef void (*USERFCN1)(int, int, const ColumnVector&, real&,                          ColumnVector&, int&);\endcodeThe function call for the Rosenbrock problem with analytic derivatives is \code   rosen(mode, n, x, f, g, result);\endcodewhere \a g is the gradient of the objective function.<li> \codetypedef void (*USERFCN2)(int, int, const ColumnVector&, real&,                          ColumnVector&, SymmetricMatrix&, int&);\endcodeSimilary, the function call for the illumination problem with analytic derivatives and Hessian is \code   illum2(mode, n, x, f, g, H, result);\endcodewhere \a H is the Hessian of the objective function.</ul><p> <a href="BoundConstrainedProblems.html">Next Section: Bound-constrained minimization </a> | <a href="UnconstrainedProblems.html">Back to Unconstrained minimization</a></p> Last revised <em> June 30, 2006</em>*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -