📄 unconstrainedobject.html.svn-base
字号:
/** \page UnconstrainedObject Declaring objective functionsNonlinear programming problems are classified according to the availability ofderivative information. The three categories <ul> <li> NLP0 - no available derivative information, <li> NLP1 - analytic first derivatives available, and <li> NLP2 - analytic first and second derivatives available </ul> The NLPX classes are abstract base classes for NLFX.Listed below are the constructors for the objective function. <ul><li> \codetypedef void (*USERFCN0)(int, const ColumnVector&, real&, int&);\endcodeIn the following code fragment, we show the calling sequence for a trigonometric function of dimension \a n. \code trig(n, x, f, result);\endcodewhere \a x is the current point, \a f is the value of the objective function, and \a result is an output argument.<li> \codetypedef void (*USERFCN1)(int, int, const ColumnVector&, real&, ColumnVector&, int&);\endcodeThe function call for the Rosenbrock problem with analytic derivatives is \code rosen(mode, n, x, f, g, result);\endcodewhere \a g is the gradient of the objective function.<li> \codetypedef void (*USERFCN2)(int, int, const ColumnVector&, real&, ColumnVector&, SymmetricMatrix&, int&);\endcodeSimilary, the function call for the illumination problem with analytic derivatives and Hessian is \code illum2(mode, n, x, f, g, H, result);\endcodewhere \a H is the Hessian of the objective function.</ul><p> <a href="BoundConstrainedProblems.html">Next Section: Bound-constrained minimization </a> | <a href="UnconstrainedProblems.html">Back to Unconstrained minimization</a></p> Last revised <em> June 30, 2006</em>*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -