📄 boundconstrainedproblems.html.svn-base
字号:
/** \page BoundConstrainedProblems Bound-constrained minimization In this section, we describe the framework for a bound-constrainedminimization problem. <UL><li> \ref BoundConstraints<li> \ref BCProblem<li> \ref BCFragments</UL>\section BCProblem Creating a bound-constrained nonlinear problem Once you have mastered bound-constrained objects and setting up the objectivefunction, it is a simple 2-step process to build a bound-constrained nonlinear problem. Let's consider the two-dimensional Rosenbrock problem with bounds onthe variables: <em> minimize </em> \f[100(x_2 - x_{1}^2)^2 + (1 - x_1)^2 \f]<em> subject to </em> \f[ -2.0 \le x_1 \le 2.0 \f] <em> </em> \f[ -2.0 \le x_2 \le 2.0 \f] Step 1: Build your bound constraint.\code int ndim = 2; ColumnVector lower(ndim), upper(ndim); lower = -2.0; upper = 2.0; Constraint bc = new BoundConstraint(ndim, lower, upper);\endcodeStep 2: Create a constrained NLF1 object.\code NLF1 rosen_problem(n,rosen,init_rosen,&bc);\endcode\section BCFragments Specifying the optimization method OPT++ contains no less than six solvers for bound-constrained optimizationproblems. To name a few, there are implementations of Newton's method, barrier Newton's method, interior-point methods, and direct search algorithms.We provide examples of solving the bound-constrained Rosenbrock problem with an active set strategy and a nonlinear interior-point method. <ol> <li> \ref tstbcqnewton <li> \ref tstbcnips</ol><p> <a href="ConstrainedProblems.html"> Next Section: Constrained minimization</a> | <a href="Classification.html">Back to Solvers Page</a> </p> Last revised <em> July 13, 2006</em>*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -