⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adc.c

📁 本程序利用CCS在TMS320F2812实现了DSp的AD采样
💻 C
字号:

#include "DSP281x_Device.h"     // DSP281x Headerfile Include File
#include "DSP281x_Examples.h"   // DSP281x Examples Include File
#include "math.h"

#define PI 3.1415926
#define SAMPLENUMBER 128  //采样点数
#define T  1;//自相关运算系统的时延,为一个已知的常数

// Prototype statements for functions found within this file.
interrupt void adc_isr(void);//中断服务子程序
void FFT();
void InitForFFT();
void MakeWave();
void Signal_Judge(void);//判断信号是否是标签信号或进行信号分层处理
void FFT_TRans(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]);
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[512]; //存放采样的结果,采样缓冲区
Uint16 Voltage2[512];//同样用来存放采样的结果,为采样缓冲区
Uint16 Voltage_Buff1[256];//用来存储信号分层后的结果,用来判断是不是标签信号
Uint16 Voltage_Buff2[256];//用来存储自相关运算后的结果
int One_Num; //在完成一次采样的数据分层后,记录分层的数据中1的个数,判断是否有标签
int Num_Point;// 采样点数
int Num_Point1;
int Num_Point2;
int INPUT[SAMPLENUMBER],DATA[SAMPLENUMBER];
float fWaveR[SAMPLENUMBER],fWaveI[SAMPLENUMBER],w[SAMPLENUMBER];
float sin_tab[SAMPLENUMBER],cos_tab[SAMPLENUMBER];
//#############################################################
main() 
{
   InitSysCtrl();//初始化cpu
   DINT;//关中断
   InitPieCtrl();//初始化pie寄存器
   IER = 0x0000;//禁止所有的中断
   IFR = 0x0000;
   InitPieVectTable();//初始化pie中断向量表
     
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.       
   EALLOW;  // This is needed to write to EALLOW protected register
   PieVectTable.ADCINT = &adc_isr;
   EDIS;    // This is needed to disable write to EALLOW protected registers
///////////////////////////////////////
   AdcRegs.ADCTRL1.bit.RESET = 1;		// Reset the ADC module
	asm(" RPT #10 || NOP");				// Must wait 12-cycles (worst-case) for ADC reset to take effect
   AdcRegs.ADCTRL3.all = 0x00C8;		// first power-up ref and bandgap circuits       
   AdcRegs.ADCTRL3.bit.ADCBGRFDN = 0x3;	// Power up bandgap/reference circuitry
   AdcRegs.ADCTRL3.bit.ADCPWDN = 1;		// Power up rest of ADC
// Enable ADCINT in PIE
   PieCtrlRegs.PIEIER1.bit.INTx6 = 1;
   IER |= M_INT1; // Enable CPU Interrupt 1
   EINT;          // Enable Global interrupt INTM
   ERTM;          // Enable Global realtime interrupt DBGM

   LoopCount = 0;
   ConversionCount = 0;

// Configure ADC
   AdcRegs.ADCMAXCONV.all = 0x0001;       // Setup 2 conv's on SEQ1
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup ADCINA0 as 1st SEQ1 conv.
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup ADCINA1 as 2nd SEQ1 conv.
   AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1;  // Enable EVASOC to start SEQ1
   AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;  // Enable SEQ1 interrupt (every EOS)
// Configure EVA
// Assumes EVA Clock is already enabled in InitSysCtrl();
   EvaRegs.T1CMPR = 0x0080;               // Setup T1 compare value
   EvaRegs.T1PR = 0x10;                 // Setup period register
   EvaRegs.GPTCONA.bit.T1TOADC = 1;       // Enable EVASOC in EVA
   EvaRegs.T1CON.all = 0x1042;            // Enable timer 1 compare (upcount mode)
                                      
// Wait for ADC interrupt
   while(1)   //比较器中断一次采样256点,然后进行相应的处理
   {										
	 if(ConversionCount%256==0)
	 Signal_Judge();
     else
	 LoopCount++; 	     
   }
}

interrupt void  adc_isr(void)
{
    Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4;
    Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4;
	   
  // If 40 conversions have been logged, start over
  if(ConversionCount == 1023) //由于信号缓冲长度为1024,因此当数据满时,
                              //清0,从新开始存数据      
   {
    ConversionCount = 0;
   }
  else ConversionCount++;
///////////////////////////////////////////////////////////////////
// Reinitialize for next ADC sequence
///////////////////////////////////////////////////////////////////	 
  AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1
  AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE	 	 	 
  return;
}


void Signal_Judge()
{
/////////////////////////////////////////////////////////
//下面将对采样后的数据进行分层处理,然后把分层后的两个数据相乘,
//从而去处信号中的累加噪声
////////////////////////////////////////////////////////  
for(Num_Point1=0; Num_Point1<=ConversionCount;Num_Point1++)
    {
       if( Voltage1[Num_Point1]<=0x0700)
		    Voltage1[Num_Point1]=0;
        else
            Voltage1[Num_Point1]=1;
     }
for(Num_Point2=0;Num_Point2<=ConversionCount;Num_Point2++)
     {
        if( Voltage2[Num_Point2]<=0x0700)
		    Voltage2[Num_Point2]=0;
        else
            Voltage2[Num_Point2]=1;
	  }
for(Num_Point=0;Num_Point<=ConversionCount;Num_Point++)
     {  
    Voltage_Buff1[Num_Point]=Voltage1[Num_Point]*Voltage2[Num_Point];
	 }   
}

///////////////////////////////////////////////////////////////////////
void FFT()
{
  	int i;
  	InitForFFT();
	MakeWave();
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		fWaveR[i]=INPUT[i];
		fWaveI[i]=0.0f;
		w[i]=0.0f;
	}
	FFT_TRans(fWaveR,fWaveI);
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		DATA[i]=w[i];
	}
	while ( 1 );	// break point
}	
	

void FFT_TRans(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]) //FFT变换,计算功率谱
{
	int x0,x1,x2,x3,x4,x5,x6,xx;
	int i,j,k,b,p,L;
	float TR,TI,temp;
	/********** following code invert sequence ************/
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		x0=x1=x2=x3=x4=x5=x6=0;
		x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01;
		xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
		dataI[xx]=dataR[i];
	}
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		dataR[i]=dataI[i]; dataI[i]=0; 
	}
	/************** following code FFT *******************/
	for ( L=1;L<=7;L++ )
	{ /* for(1) */
		b=1; i=L-1;
		while ( i>0 ) 
		{
			b=b*2; i--;
		} /* b= 2^(L-1) */
		for ( j=0;j<=b-1;j++ ) /* for (2) */
		{
			p=1; i=7-L;
			while ( i>0 ) /* p=pow(2,7-L)*j; */
			{
				p=p*2; i--;
			}
			p=p*j;
			for ( k=j;k<128;k=k+2*b ) /* for (3) */
			{
				TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];
				dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
				dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
				dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
				dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
			} /* END for (3) */
		} /* END for (2) */
	} /* END for (1) */
	for ( i=0;i<SAMPLENUMBER/2;i++ )
	{ 
		w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);
	}
} /* END FFT */
///////////////////////////////////
void InitForFFT()
{
     int i;
	
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		sin_tab[i]=sin(PI*2*i/SAMPLENUMBER);
		cos_tab[i]=cos(PI*2*i/SAMPLENUMBER);
	}

}
///////////////////////////////////
void MakeWave()
{
     int i;
	
	for ( i=0;i<SAMPLENUMBER;i++ )
	{
		INPUT[i]=sin(PI*2*i/SAMPLENUMBER*3)*1024;
	}

}
//////////////////////////////////////////////////////////////////////
void relativity() //相关性计算,计算信号的自相关,为有限长序列
{
 
 int n; 
 for(n=1;n<=256;n++)
 {
  Voltage_Buff2[n]=Voltage1[n]*Voltage2[n];
 } 
} 
//////////////////////////////////////////////////////////////////////
void Judge_Process() //特征判断,信号处理,有标签报警,没有标签则返回
{





}


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -