📄 adc.c
字号:
#include "DSP281x_Device.h" // DSP281x Headerfile Include File
#include "DSP281x_Examples.h" // DSP281x Examples Include File
#include "math.h"
#define PI 3.1415926
#define SAMPLENUMBER 128 //采样点数
#define T 1;//自相关运算系统的时延,为一个已知的常数
// Prototype statements for functions found within this file.
interrupt void adc_isr(void);//中断服务子程序
void FFT();
void InitForFFT();
void MakeWave();
void Signal_Judge(void);//判断信号是否是标签信号或进行信号分层处理
void FFT_TRans(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]);
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[512]; //存放采样的结果,采样缓冲区
Uint16 Voltage2[512];//同样用来存放采样的结果,为采样缓冲区
Uint16 Voltage_Buff1[256];//用来存储信号分层后的结果,用来判断是不是标签信号
Uint16 Voltage_Buff2[256];//用来存储自相关运算后的结果
int One_Num; //在完成一次采样的数据分层后,记录分层的数据中1的个数,判断是否有标签
int Num_Point;// 采样点数
int Num_Point1;
int Num_Point2;
int INPUT[SAMPLENUMBER],DATA[SAMPLENUMBER];
float fWaveR[SAMPLENUMBER],fWaveI[SAMPLENUMBER],w[SAMPLENUMBER];
float sin_tab[SAMPLENUMBER],cos_tab[SAMPLENUMBER];
//#############################################################
main()
{
InitSysCtrl();//初始化cpu
DINT;//关中断
InitPieCtrl();//初始化pie寄存器
IER = 0x0000;//禁止所有的中断
IFR = 0x0000;
InitPieVectTable();//初始化pie中断向量表
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected register
PieVectTable.ADCINT = &adc_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
///////////////////////////////////////
AdcRegs.ADCTRL1.bit.RESET = 1; // Reset the ADC module
asm(" RPT #10 || NOP"); // Must wait 12-cycles (worst-case) for ADC reset to take effect
AdcRegs.ADCTRL3.all = 0x00C8; // first power-up ref and bandgap circuits
AdcRegs.ADCTRL3.bit.ADCBGRFDN = 0x3; // Power up bandgap/reference circuitry
AdcRegs.ADCTRL3.bit.ADCPWDN = 1; // Power up rest of ADC
// Enable ADCINT in PIE
PieCtrlRegs.PIEIER1.bit.INTx6 = 1;
IER |= M_INT1; // Enable CPU Interrupt 1
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
LoopCount = 0;
ConversionCount = 0;
// Configure ADC
AdcRegs.ADCMAXCONV.all = 0x0001; // Setup 2 conv's on SEQ1
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup ADCINA0 as 1st SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup ADCINA1 as 2nd SEQ1 conv.
AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1; // Enable EVASOC to start SEQ1
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
// Configure EVA
// Assumes EVA Clock is already enabled in InitSysCtrl();
EvaRegs.T1CMPR = 0x0080; // Setup T1 compare value
EvaRegs.T1PR = 0x10; // Setup period register
EvaRegs.GPTCONA.bit.T1TOADC = 1; // Enable EVASOC in EVA
EvaRegs.T1CON.all = 0x1042; // Enable timer 1 compare (upcount mode)
// Wait for ADC interrupt
while(1) //比较器中断一次采样256点,然后进行相应的处理
{
if(ConversionCount%256==0)
Signal_Judge();
else
LoopCount++;
}
}
interrupt void adc_isr(void)
{
Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4;
Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4;
// If 40 conversions have been logged, start over
if(ConversionCount == 1023) //由于信号缓冲长度为1024,因此当数据满时,
//清0,从新开始存数据
{
ConversionCount = 0;
}
else ConversionCount++;
///////////////////////////////////////////////////////////////////
// Reinitialize for next ADC sequence
///////////////////////////////////////////////////////////////////
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
return;
}
void Signal_Judge()
{
/////////////////////////////////////////////////////////
//下面将对采样后的数据进行分层处理,然后把分层后的两个数据相乘,
//从而去处信号中的累加噪声
////////////////////////////////////////////////////////
for(Num_Point1=0; Num_Point1<=ConversionCount;Num_Point1++)
{
if( Voltage1[Num_Point1]<=0x0700)
Voltage1[Num_Point1]=0;
else
Voltage1[Num_Point1]=1;
}
for(Num_Point2=0;Num_Point2<=ConversionCount;Num_Point2++)
{
if( Voltage2[Num_Point2]<=0x0700)
Voltage2[Num_Point2]=0;
else
Voltage2[Num_Point2]=1;
}
for(Num_Point=0;Num_Point<=ConversionCount;Num_Point++)
{
Voltage_Buff1[Num_Point]=Voltage1[Num_Point]*Voltage2[Num_Point];
}
}
///////////////////////////////////////////////////////////////////////
void FFT()
{
int i;
InitForFFT();
MakeWave();
for ( i=0;i<SAMPLENUMBER;i++ )
{
fWaveR[i]=INPUT[i];
fWaveI[i]=0.0f;
w[i]=0.0f;
}
FFT_TRans(fWaveR,fWaveI);
for ( i=0;i<SAMPLENUMBER;i++ )
{
DATA[i]=w[i];
}
while ( 1 ); // break point
}
void FFT_TRans(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]) //FFT变换,计算功率谱
{
int x0,x1,x2,x3,x4,x5,x6,xx;
int i,j,k,b,p,L;
float TR,TI,temp;
/********** following code invert sequence ************/
for ( i=0;i<SAMPLENUMBER;i++ )
{
x0=x1=x2=x3=x4=x5=x6=0;
x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01;
xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
dataI[xx]=dataR[i];
}
for ( i=0;i<SAMPLENUMBER;i++ )
{
dataR[i]=dataI[i]; dataI[i]=0;
}
/************** following code FFT *******************/
for ( L=1;L<=7;L++ )
{ /* for(1) */
b=1; i=L-1;
while ( i>0 )
{
b=b*2; i--;
} /* b= 2^(L-1) */
for ( j=0;j<=b-1;j++ ) /* for (2) */
{
p=1; i=7-L;
while ( i>0 ) /* p=pow(2,7-L)*j; */
{
p=p*2; i--;
}
p=p*j;
for ( k=j;k<128;k=k+2*b ) /* for (3) */
{
TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
} /* END for (3) */
} /* END for (2) */
} /* END for (1) */
for ( i=0;i<SAMPLENUMBER/2;i++ )
{
w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);
}
} /* END FFT */
///////////////////////////////////
void InitForFFT()
{
int i;
for ( i=0;i<SAMPLENUMBER;i++ )
{
sin_tab[i]=sin(PI*2*i/SAMPLENUMBER);
cos_tab[i]=cos(PI*2*i/SAMPLENUMBER);
}
}
///////////////////////////////////
void MakeWave()
{
int i;
for ( i=0;i<SAMPLENUMBER;i++ )
{
INPUT[i]=sin(PI*2*i/SAMPLENUMBER*3)*1024;
}
}
//////////////////////////////////////////////////////////////////////
void relativity() //相关性计算,计算信号的自相关,为有限长序列
{
int n;
for(n=1;n<=256;n++)
{
Voltage_Buff2[n]=Voltage1[n]*Voltage2[n];
}
}
//////////////////////////////////////////////////////////////////////
void Judge_Process() //特征判断,信号处理,有标签报警,没有标签则返回
{
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -