📄 matrix.java
字号:
try {
for (int i = 0; i < r.length; i++) {
for (int j = j0; j <= j1; j++) {
A[r[i]][j] = X.get(i,j-j0);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Set a submatrix.
* @param i0 Initial row index
* @param i1 Final row index
* @param c Array of column indices.
* @param X A(i0:i1,c(:))
* @exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix(int i0, int i1, int[] c, Matrix X) {
try {
for (int i = i0; i <= i1; i++) {
for (int j = 0; j < c.length; j++) {
A[i][c[j]] = X.get(i-i0,j);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Returns true if the matrix is symmetric.
*
* @return boolean true if matrix is symmetric.
* @author FracPete, taken from old weka.core.Matrix class
*/
public boolean isSymmetric() {
int nr = A.length, nc = A[0].length;
if (nr != nc)
return false;
for (int i = 0; i < nc; i++) {
for (int j = 0; j < i; j++) {
if (A[i][j] != A[j][i])
return false;
}
}
return true;
}
/**
* returns whether the matrix is a square matrix or not.
*
* @return true if the matrix is a square matrix
* @author FracPete
*/
public boolean isSquare() {
return (getRowDimension() == getColumnDimension());
}
/**
* Matrix transpose.
* @return A'
*/
public Matrix transpose() {
Matrix X = new Matrix(n,m);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[j][i] = A[i][j];
}
}
return X;
}
/**
* One norm
* @return maximum column sum.
*/
public double norm1() {
double f = 0;
for (int j = 0; j < n; j++) {
double s = 0;
for (int i = 0; i < m; i++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f,s);
}
return f;
}
/**
* Two norm
* @return maximum singular value.
*/
public double norm2() {
return (new SingularValueDecomposition(this).norm2());
}
/**
* Infinity norm
* @return maximum row sum.
*/
public double normInf() {
double f = 0;
for (int i = 0; i < m; i++) {
double s = 0;
for (int j = 0; j < n; j++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f,s);
}
return f;
}
/**
* Frobenius norm
* @return sqrt of sum of squares of all elements.
*/
public double normF() {
double f = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
f = Maths.hypot(f,A[i][j]);
}
}
return f;
}
/**
* Unary minus
* @return -A
*/
public Matrix uminus() {
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = -A[i][j];
}
}
return X;
}
/**
* C = A + B
* @param B another matrix
* @return A + B
*/
public Matrix plus(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] + B.A[i][j];
}
}
return X;
}
/**
* A = A + B
* @param B another matrix
* @return A + B
*/
public Matrix plusEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] + B.A[i][j];
}
}
return this;
}
/**
* C = A - B
* @param B another matrix
* @return A - B
*/
public Matrix minus(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] - B.A[i][j];
}
}
return X;
}
/**
* A = A - B
* @param B another matrix
* @return A - B
*/
public Matrix minusEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] - B.A[i][j];
}
}
return this;
}
/**
* Element-by-element multiplication, C = A.*B
* @param B another matrix
* @return A.*B
*/
public Matrix arrayTimes(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] * B.A[i][j];
}
}
return X;
}
/**
* Element-by-element multiplication in place, A = A.*B
* @param B another matrix
* @return A.*B
*/
public Matrix arrayTimesEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] * B.A[i][j];
}
}
return this;
}
/**
* Element-by-element right division, C = A./B
* @param B another matrix
* @return A./B
*/
public Matrix arrayRightDivide(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] / B.A[i][j];
}
}
return X;
}
/**
* Element-by-element right division in place, A = A./B
* @param B another matrix
* @return A./B
*/
public Matrix arrayRightDivideEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] / B.A[i][j];
}
}
return this;
}
/**
* Element-by-element left division, C = A.\B
* @param B another matrix
* @return A.\B
*/
public Matrix arrayLeftDivide(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = B.A[i][j] / A[i][j];
}
}
return X;
}
/**
* Element-by-element left division in place, A = A.\B
* @param B another matrix
* @return A.\B
*/
public Matrix arrayLeftDivideEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = B.A[i][j] / A[i][j];
}
}
return this;
}
/**
* Multiply a matrix by a scalar, C = s*A
* @param s scalar
* @return s*A
*/
public Matrix times(double s) {
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = s*A[i][j];
}
}
return X;
}
/**
* Multiply a matrix by a scalar in place, A = s*A
* @param s scalar
* @return replace A by s*A
*/
public Matrix timesEquals(double s) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = s*A[i][j];
}
}
return this;
}
/**
* Linear algebraic matrix multiplication, A * B
* @param B another matrix
* @return Matrix product, A * B
* @exception IllegalArgumentException Matrix inner dimensions must agree.
*/
public Matrix times(Matrix B) {
if (B.m != n) {
throw new IllegalArgumentException("Matrix inner dimensions must agree.");
}
Matrix X = new Matrix(m,B.n);
double[][] C = X.getArray();
double[] Bcolj = new double[n];
for (int j = 0; j < B.n; j++) {
for (int k = 0; k < n; k++) {
Bcolj[k] = B.A[k][j];
}
for (int i = 0; i < m; i++) {
double[] Arowi = A[i];
double s = 0;
for (int k = 0; k < n; k++) {
s += Arowi[k]*Bcolj[k];
}
C[i][j] = s;
}
}
return X;
}
/**
* LU Decomposition
* @return LUDecomposition
* @see LUDecomposition
*/
public LUDecomposition lu() {
return new LUDecomposition(this);
}
/**
* QR Decomposition
* @return QRDecomposition
* @see QRDecomposition
*/
public QRDecomposition qr() {
return new QRDecomposition(this);
}
/**
* Cholesky Decomposition
* @return CholeskyDecomposition
* @see CholeskyDecomposition
*/
public CholeskyDecomposition chol() {
return new CholeskyDecomposition(this);
}
/**
* Singular Value Decomposition
* @return SingularValueDecomposition
* @see SingularValueDecomposition
*/
public SingularValueDecomposition svd() {
return new SingularValueDecomposition(this);
}
/**
* Eigenvalue Decomposition
* @return EigenvalueDecomposition
* @see EigenvalueDecomposition
*/
public EigenvalueDecomposition eig() {
return new EigenvalueDecomposition(this);
}
/**
* Solve A*X = B
* @param B right hand side
* @return solution if A is square, least squares solution otherwise
*/
public Matrix solve(Matrix B) {
return (m == n ? (new LUDecomposition(this)).solve(B) :
(new QRDecomposition(this)).solve(B));
}
/**
* Solve X*A = B, which is also A'*X' = B'
* @param B right hand side
* @return solution if A is square, least squares solution otherwise.
*/
public Matrix solveTranspose(Matrix B) {
return transpose().solve(B.transpose());
}
/**
* Matrix inverse or pseudoinverse
* @return inverse(A) if A is square, pseudoinverse otherwise.
*/
public Matrix inverse() {
return solve(identity(m,m));
}
/**
* returns the square root of the matrix, i.e., X from the equation
* X*X = A.<br/>
* Steps in the Calculation (see <a href="http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sqrtm.html" target="blank"><code>sqrtm</code></a> in Matlab):<br/>
* <ol>
* <li>perform eigenvalue decomposition<br/>[V,D]=eig(A)</li>
* <li>take the square root of all elements in D (only the ones with
* positive sign are considered for further computation)<br/>
* S=sqrt(D)</li>
* <li>calculate the root<br/>
* X=V*S/V, which can be also written as X=(V'\(V*S)')'</li>
* </ol>
* <p/>
* <b>Note:</b> since this method uses other high-level methods, it generates
* several instances of matrices. This can be problematic with large
* matrices.
* <p/>
* Examples:
* <ol>
* <li>
* <pre>
* X =
* 5 -4 1 0 0
* -4 6 -4 1 0
* 1 -4 6 -4 1
* 0 1 -4 6 -4
* 0 0 1 -4 5
*
* sqrt(X) =
* 2 -1 -0 -0 -0
* -1 2 -1 0 -0
* 0 -1 2 -1 0
* -0 0 -1 2 -1
* -0 -0 -0 -1 2
*
* Matrix m = new Matrix(new double[][]{{5,-4,1,0,0},{-4,6,-4,1,0},{1,-4,6,-4,1},{0,1,-4,6,-4},{0,0,1,-4,5}});
* </pre>
* </li>
* <li>
* <pre>
* X =
* 7 10
* 15 22
*
* sqrt(X) =
* 1.5667 1.7408
* 2.6112 4.1779
*
* Matrix m = new Matrix(new double[][]{{7, 10},{15, 22}});
* </pre>
* </li>
* </ol>
*
* @return sqrt(A)
* @author FracPete
*/
public Matrix sqrt() {
EigenvalueDecomposition evd;
Matrix s;
Matrix v;
Matrix d;
Matrix result;
Matrix a;
Matrix b;
int i;
int n;
result = null;
// eigenvalue decomp.
// [V, D] = eig(A) with A = this
evd = this.eig();
v = evd.getV();
d = evd.getD();
// S = sqrt of cells of D
s = new Matrix(d.getRowDimension(), d.getColumnDimension());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -