📄 matrix.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Matrix.java
* Copyright (C) 1999 Yong Wang, Eibe Frank, Len Trigg, Gabi Schmidberger
*
*/
package weka.core;
import java.io.Writer;
import java.io.Reader;
import java.io.LineNumberReader;
import java.io.Serializable;
import java.util.StringTokenizer;
/**
* Class for performing operations on a matrix of floating-point values.
* <p/>
* Deprecated: Uses internally the code of the sub-package
* <code>weka.core.matrix</code> - only for backwards compatibility.
*
* @author Gabi Schmidberger (gabi@cs.waikato.ac.nz)
* @author Yong Wang (yongwang@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @author Len Trigg (eibe@cs.waikato.ac.nz)
* @author Fracpete (fracpete at waikato dot ac dot nz)
* @version $Revision: 1.1 $
* @deprecated Use instead <code>weka.core.matrix.Matrix</code> - only for
* backwards compatibility.
*/
public class Matrix
implements Cloneable, Serializable {
/**
* The actual matrix */
protected weka.core.matrix.Matrix m_Matrix = null;
/**
* Constructs a matrix and initializes it with default values.
*
* @param nr the number of rows
* @param nc the number of columns
*/
public Matrix(int nr, int nc) {
m_Matrix = new weka.core.matrix.Matrix(nr, nc);
}
/**
* Constructs a matrix using a given array.
*
* @param array the values of the matrix
*/
public Matrix(double[][] array) throws Exception {
m_Matrix = new weka.core.matrix.Matrix(array);
}
/**
* Reads a matrix from a reader. The first line in the file should
* contain the number of rows and columns. Subsequent lines
* contain elements of the matrix.
*
* @param r the reader containing the matrix
* @throws Exception if an error occurs
*/
public Matrix(Reader r) throws Exception {
m_Matrix = new weka.core.matrix.Matrix(r);
}
/**
* Creates and returns a clone of this object.
*
* @return a clone of this instance.
* @throws Exception if an error occurs
*/
public Object clone() {
try {
return new Matrix(m_Matrix.getArrayCopy());
}
catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* Writes out a matrix.
*
* @param w the output Writer
* @throws Exception if an error occurs
*/
public void write(Writer w) throws Exception {
m_Matrix.write(w);
}
/**
* returns the internal matrix
* @see #m_Matrix
*/
protected weka.core.matrix.Matrix getMatrix() {
return m_Matrix;
}
/**
* Returns the value of a cell in the matrix.
*
* @param rowIndex the row's index
* @param columnIndex the column's index
* @return the value of the cell of the matrix
*/
public final double getElement(int rowIndex, int columnIndex) {
return m_Matrix.get(rowIndex, columnIndex);
}
/**
* Add a value to an element.
*
* @param rowIndex the row's index.
* @param columnIndex the column's index.
* @param value the value to add.
*/
public final void addElement(int rowIndex, int columnIndex, double value) {
m_Matrix.set(
rowIndex, columnIndex, m_Matrix.get(rowIndex, columnIndex) + value);
}
/**
* Returns the number of rows in the matrix.
*
* @return the number of rows
*/
public final int numRows() {
return m_Matrix.getRowDimension();
}
/**
* Returns the number of columns in the matrix.
*
* @return the number of columns
*/
public final int numColumns() {
return m_Matrix.getColumnDimension();
}
/**
* Sets an element of the matrix to the given value.
*
* @param rowIndex the row's index
* @param columnIndex the column's index
* @param value the value
*/
public final void setElement(int rowIndex, int columnIndex, double value) {
m_Matrix.set(rowIndex, columnIndex, value);
}
/**
* Sets a row of the matrix to the given row. Performs a deep copy.
*
* @param index the row's index
* @param newRow an array of doubles
*/
public final void setRow(int index, double[] newRow) {
for (int i = 0; i < newRow.length; i++)
m_Matrix.set(index, i, newRow[i]);
}
/**
* Gets a row of the matrix and returns it as double array.
*
* @param index the row's index
* @return an array of doubles
*/
public double[] getRow(int index) {
double[] newRow = new double[this.numColumns()];
for (int i = 0; i < newRow.length; i++)
newRow[i] = getElement(index, i);
return newRow;
}
/**
* Gets a column of the matrix and returns it as a double array.
*
* @param index the column's index
* @return an array of doubles
*/
public double[] getColumn(int index) {
double[] newColumn = new double[this.numRows()];
for (int i = 0; i < newColumn.length; i++)
newColumn[i] = getElement(i, index);
return newColumn;
}
/**
* Sets a column of the matrix to the given column. Performs a deep copy.
*
* @param index the column's index
* @param newColumn an array of doubles
*/
public final void setColumn(int index, double[] newColumn) {
for (int i = 0; i < numRows(); i++)
m_Matrix.set(i, index, newColumn[i]);
}
/**
* Converts a matrix to a string
*
* @return the converted string
*/
public String toString() {
return m_Matrix.toString();
}
/**
* Returns the sum of this matrix with another.
*
* @return a matrix containing the sum.
*/
public final Matrix add(Matrix other) {
try {
return new Matrix(m_Matrix.plus(other.getMatrix()).getArrayCopy());
}
catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* Returns the transpose of a matrix.
*
* @return the transposition of this instance.
*/
public final Matrix transpose() {
try {
return new Matrix(m_Matrix.transpose().getArrayCopy());
}
catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* Returns true if the matrix is symmetric.
*
* @return boolean true if matrix is symmetric.
*/
public boolean isSymmetric() {
return m_Matrix.isSymmetric();
}
/**
* Returns the multiplication of two matrices
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -