📄 regressionsplitevaluator.java
字号:
key[2] = m_ClassifierVersion;
return key;
}
/**
* Gets the data types of each of the result columns produced for a
* single run. The number of result fields must be constant
* for a given SplitEvaluator.
*
* @return an array containing objects of the type of each result column.
* The objects should be Strings, or Doubles.
*/
public Object [] getResultTypes() {
int addm = (m_AdditionalMeasures != null)
? m_AdditionalMeasures.length
: 0;
Object [] resultTypes = new Object[RESULT_SIZE+addm];
Double doub = new Double(0);
int current = 0;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = doub;
// Timing stats
resultTypes[current++] = doub;
resultTypes[current++] = doub;
resultTypes[current++] = "";
// add any additional measures
for (int i=0;i<addm;i++) {
resultTypes[current++] = doub;
}
if (current != RESULT_SIZE+addm) {
throw new Error("ResultTypes didn't fit RESULT_SIZE");
}
return resultTypes;
}
/**
* Gets the names of each of the result columns produced for a single run.
* The number of result fields must be constant
* for a given SplitEvaluator.
*
* @return an array containing the name of each result column
*/
public String [] getResultNames() {
int addm = (m_AdditionalMeasures != null)
? m_AdditionalMeasures.length
: 0;
String [] resultNames = new String[RESULT_SIZE+addm];
int current = 0;
resultNames[current++] = "Number_of_instances";
// Sensitive stats - certainty of predictions
resultNames[current++] = "Mean_absolute_error";
resultNames[current++] = "Root_mean_squared_error";
resultNames[current++] = "Relative_absolute_error";
resultNames[current++] = "Root_relative_squared_error";
resultNames[current++] = "Correlation_coefficient";
// SF stats
resultNames[current++] = "SF_prior_entropy";
resultNames[current++] = "SF_scheme_entropy";
resultNames[current++] = "SF_entropy_gain";
resultNames[current++] = "SF_mean_prior_entropy";
resultNames[current++] = "SF_mean_scheme_entropy";
resultNames[current++] = "SF_mean_entropy_gain";
// Timing stats
resultNames[current++] = "Time_training";
resultNames[current++] = "Time_testing";
// Classifier defined extras
resultNames[current++] = "Summary";
// add any additional measures
for (int i=0;i<addm;i++) {
resultNames[current++] = m_AdditionalMeasures[i];
}
if (current != RESULT_SIZE+addm) {
throw new Error("ResultNames didn't fit RESULT_SIZE");
}
return resultNames;
}
/**
* Gets the results for the supplied train and test datasets. Now performs
* a deep copy of the classifier before it is built and evaluated (just in case
* the classifier is not initialized properly in buildClassifier()).
*
* @param train the training Instances.
* @param test the testing Instances.
* @return the results stored in an array. The objects stored in
* the array may be Strings, Doubles, or null (for the missing value).
* @exception Exception if a problem occurs while getting the results
*/
public Object [] getResult(Instances train, Instances test)
throws Exception {
if (train.classAttribute().type() != Attribute.NUMERIC) {
throw new Exception("Class attribute is not numeric!");
}
if (m_Template == null) {
throw new Exception("No classifier has been specified");
}
int addm = (m_AdditionalMeasures != null)
? m_AdditionalMeasures.length
: 0;
Object [] result = new Object[RESULT_SIZE+addm];
Evaluation eval = new Evaluation(train);
m_Classifier = Classifier.makeCopy(m_Template);
long trainTimeStart = System.currentTimeMillis();
m_Classifier.buildClassifier(train);
long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
long testTimeStart = System.currentTimeMillis();
eval.evaluateModel(m_Classifier, test);
long testTimeElapsed = System.currentTimeMillis() - testTimeStart;
m_result = eval.toSummaryString();
// The results stored are all per instance -- can be multiplied by the
// number of instances to get absolute numbers
int current = 0;
result[current++] = new Double(eval.numInstances());
result[current++] = new Double(eval.meanAbsoluteError());
result[current++] = new Double(eval.rootMeanSquaredError());
result[current++] = new Double(eval.relativeAbsoluteError());
result[current++] = new Double(eval.rootRelativeSquaredError());
result[current++] = new Double(eval.correlationCoefficient());
result[current++] = new Double(eval.SFPriorEntropy());
result[current++] = new Double(eval.SFSchemeEntropy());
result[current++] = new Double(eval.SFEntropyGain());
result[current++] = new Double(eval.SFMeanPriorEntropy());
result[current++] = new Double(eval.SFMeanSchemeEntropy());
result[current++] = new Double(eval.SFMeanEntropyGain());
// Timing stats
result[current++] = new Double(trainTimeElapsed / 1000.0);
result[current++] = new Double(testTimeElapsed / 1000.0);
if (m_Classifier instanceof Summarizable) {
result[current++] = ((Summarizable)m_Classifier).toSummaryString();
} else {
result[current++] = null;
}
for (int i=0;i<addm;i++) {
if (m_doesProduce[i]) {
try {
double dv = ((AdditionalMeasureProducer)m_Classifier).
getMeasure(m_AdditionalMeasures[i]);
if (!Instance.isMissingValue(dv)) {
Double value = new Double(dv);
result[current++] = value;
} else {
result[current++] = null;
}
} catch (Exception ex) {
System.err.println(ex);
}
} else {
result[current++] = null;
}
}
if (current != RESULT_SIZE+addm) {
throw new Error("Results didn't fit RESULT_SIZE");
}
return result;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String classifierTipText() {
return "The classifier to use.";
}
/**
* Get the value of Classifier.
*
* @return Value of Classifier.
*/
public Classifier getClassifier() {
return m_Template;
}
/**
* Sets the classifier.
*
* @param newClassifier the new classifier to use.
*/
public void setClassifier(Classifier newClassifier) {
m_Template = newClassifier;
updateOptions();
System.err.println("RegressionSplitEvaluator: In set classifier");
}
/**
* Updates the options that the current classifier is using.
*/
protected void updateOptions() {
if (m_Template instanceof OptionHandler) {
m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Template)
.getOptions());
} else {
m_ClassifierOptions = "";
}
if (m_Template instanceof Serializable) {
ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template
.getClass());
m_ClassifierVersion = "" + obs.getSerialVersionUID();
} else {
m_ClassifierVersion = "";
}
}
/**
* Set the Classifier to use, given it's class name. A new classifier will be
* instantiated.
*
* @param newClassifier the Classifier class name.
* @exception Exception if the class name is invalid.
*/
public void setClassifierName(String newClassifierName) throws Exception {
try {
setClassifier((Classifier)Class.forName(newClassifierName)
.newInstance());
} catch (Exception ex) {
throw new Exception("Can't find Classifier with class name: "
+ newClassifierName);
}
}
/**
* Gets the raw output from the classifier
* @return the raw output from the classifier
*/
public String getRawResultOutput() {
StringBuffer result = new StringBuffer();
if (m_Classifier == null) {
return "<null> classifier";
}
result.append(toString());
result.append("Classifier model: \n"+m_Classifier.toString()+'\n');
// append the performance statistics
if (m_result != null) {
result.append(m_result);
if (m_doesProduce != null) {
for (int i=0;i<m_doesProduce.length;i++) {
if (m_doesProduce[i]) {
try {
double dv = ((AdditionalMeasureProducer)m_Classifier).
getMeasure(m_AdditionalMeasures[i]);
if (!Instance.isMissingValue(dv)) {
Double value = new Double(dv);
result.append(m_AdditionalMeasures[i]+" : "+value+'\n');
} else {
result.append(m_AdditionalMeasures[i]+" : "+'?'+'\n');
}
} catch (Exception ex) {
System.err.println(ex);
}
}
}
}
}
return result.toString();
}
/**
* Returns a text description of the split evaluator.
*
* @return a text description of the split evaluator.
*/
public String toString() {
String result = "RegressionSplitEvaluator: ";
if (m_Template == null) {
return result + "<null> classifier";
}
return result + m_Template.getClass().getName() + " "
+ m_ClassifierOptions + "(version " + m_ClassifierVersion + ")";
}
} // RegressionSplitEvaluator
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -