📄 costsensitiveclassifier.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* CostSensitiveClassifier.java
* Copyright (C) 2002 University of Waikato
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.classifiers.rules.ZeroR;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.StringReader;
import java.io.StringWriter;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Drawable;
import weka.core.UnsupportedClassTypeException;
import weka.filters.Filter;
/**
* This metaclassifier makes its base classifier cost-sensitive. Two methods
* can be used to introduce cost-sensitivity: reweighting training instances
* according to the total cost assigned to each class; or predicting the class
* with minimum expected misclassification cost (rather than the most likely
* class). <p>
*
* Valid options are:<p>
*
* -M <br>
* Minimize expected misclassification cost.
* (default is to reweight training instances according to costs per class)<p>
*
* -W classname <br>
* Specify the full class name of a classifier (required).<p>
*
* -C cost file <br>
* File name of a cost matrix to use. If this is not supplied, a cost
* matrix will be loaded on demand. The name of the on-demand file
* is the relation name of the training data plus ".cost", and the
* path to the on-demand file is specified with the -N option.<p>
*
* -N directory <br>
* Name of a directory to search for cost files when loading costs on demand
* (default current directory). <p>
*
* -S seed <br>
* Random number seed used when reweighting by resampling (default 1).<p>
*
* -cost-matrix matrix<br>
* The cost matrix, specified in Matlab single line format.<p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @author Len Trigg (len@reeltwo.com)
* @version $Revision: 1.1 $
*/
public class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer
implements OptionHandler, Drawable {
/* Specify possible sources of the cost matrix */
public static final int MATRIX_ON_DEMAND = 1;
public static final int MATRIX_SUPPLIED = 2;
public static final Tag [] TAGS_MATRIX_SOURCE = {
new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"),
new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix")
};
/** Indicates the current cost matrix source */
protected int m_MatrixSource = MATRIX_ON_DEMAND;
/**
* The directory used when loading cost files on demand, null indicates
* current directory
*/
protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));
/** The name of the cost file, for command line options */
protected String m_CostFile;
/** The cost matrix */
protected CostMatrix m_CostMatrix = new CostMatrix(1);
/**
* True if the costs should be used by selecting the minimum expected
* cost (false means weight training data by the costs)
*/
protected boolean m_MinimizeExpectedCost;
/**
* String describing default classifier.
*/
protected String defaultClassifierString() {
return "weka.classifiers.rules.ZeroR";
}
/**
* Default constructor.
*/
public CostSensitiveClassifier() {
m_Classifier = new weka.classifiers.rules.ZeroR();
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(5);
newVector.addElement(new Option(
"\tMinimize expected misclassification cost. Default is to\n"
+"\treweight training instances according to costs per class",
"M", 0, "-M"));
newVector.addElement(new Option(
"\tFile name of a cost matrix to use. If this is not supplied,\n"
+"\ta cost matrix will be loaded on demand. The name of the\n"
+"\ton-demand file is the relation name of the training data\n"
+"\tplus \".cost\", and the path to the on-demand file is\n"
+"\tspecified with the -N option.",
"C", 1, "-C <cost file name>"));
newVector.addElement(new Option(
"\tName of a directory to search for cost files when loading\n"
+"\tcosts on demand (default current directory).",
"N", 1, "-N <directory>"));
newVector.addElement(new Option(
"\tThe cost matrix in Matlab single line format.",
"cost-matrix", 1, "-cost-matrix <matrix>"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -M <br>
* Minimize expected misclassification cost.
* (default is to reweight training instances according to costs per class)<p>
*
* -W classname <br>
* Specify the full class name of a classifier (required).<p>
*
* -C cost file <br>
* File name of a cost matrix to use. If this is not supplied, a cost
* matrix will be loaded on demand. The name of the on-demand file
* is the relation name of the training data plus ".cost", and the
* path to the on-demand file is specified with the -N option.<p>
*
* -N directory <br>
* Name of a directory to search for cost files when loading costs on demand
* (default current directory). <p>
*
* -S seed <br>
* Random number seed used when reweighting by resampling (default 1).<p>
*
* -cost-matrix matrix<br>
* The cost matrix, specified in Matlab single line format.<p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setMinimizeExpectedCost(Utils.getFlag('M', options));
String costFile = Utils.getOption('C', options);
if (costFile.length() != 0) {
try {
setCostMatrix(new CostMatrix(new BufferedReader(
new FileReader(costFile))));
} catch (Exception ex) {
// now flag as possible old format cost matrix. Delay cost matrix
// loading until buildClassifer is called
setCostMatrix(null);
}
setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,
TAGS_MATRIX_SOURCE));
m_CostFile = costFile;
} else {
setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND,
TAGS_MATRIX_SOURCE));
}
String demandDir = Utils.getOption('D', options);
if (demandDir.length() != 0) {
setOnDemandDirectory(new File(demandDir));
}
String cost_matrix = Utils.getOption("cost-matrix", options);
if (cost_matrix.length() != 0) {
StringWriter writer = new StringWriter();
CostMatrix.parseMatlab(cost_matrix).write(writer);
setCostMatrix(new CostMatrix(new StringReader(writer.toString())));
setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,
TAGS_MATRIX_SOURCE));
}
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 7];
int current = 0;
if (m_MatrixSource == MATRIX_SUPPLIED) {
if (m_CostFile != null) {
options[current++] = "-C";
options[current++] = "" + m_CostFile;
}
else {
options[current++] = "-cost-matrix";
options[current++] = getCostMatrix().toMatlab();
}
} else {
options[current++] = "-N";
options[current++] = "" + getOnDemandDirectory();
}
if (getMinimizeExpectedCost()) {
options[current++] = "-M";
}
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
while (current < options.length) {
if (options[current] == null) {
options[current] = "";
}
current++;
}
return options;
}
/**
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "A metaclassifier that makes its base classifier cost-sensitive. "
+ "Two methods can be used to introduce cost-sensitivity: reweighting "
+ "training instances according to the total cost assigned to each "
+ "class; or predicting the class with minimum expected "
+ "misclassification cost (rather than the most likely class). "
+ "Performance can often be "
+ "improved by using a Bagged classifier to improve the probability "
+ "estimates of the base classifier.";
}
/**
* @return tip text for this property suitable for
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -