📄 additiveregression.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* AdditiveRegression.java
* Copyright (C) 2000 Mark Hall
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.trees.DecisionStump;
import weka.classifiers.rules.ZeroR;
import java.io.*;
import java.util.*;
import weka.core.*;
import weka.classifiers.*;
/**
* Meta classifier that enhances the performance of a regression base
* classifier. Each iteration fits a model to the residuals left by the
* classifier on the previous iteration. Prediction is accomplished by
* adding the predictions of each classifier. Smoothing is accomplished
* through varying the shrinkage (learning rate) parameter. <p>
*
* For more information see: <p>
*
* Friedman, J.H. (1999). Stochastic Gradient Boosting. Technical Report
* Stanford University. http://www-stat.stanford.edu/~jhf/ftp/stobst.ps. <p>
*
* Valid options from the command line are: <p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier.<p>
*
* -S shrinkage rate <br>
* Smaller values help prevent overfitting and have a smoothing effect
* (but increase learning time).
* (default = 1.0, ie no shrinkage). <p>
*
* -I max models <br>
* Set the maximum number of models to generate.
* (default = 10). <p>
*
* -D <br>
* Debugging output. <p>
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @version $Revision: 1.1 $
*/
public class AdditiveRegression extends IteratedSingleClassifierEnhancer
implements OptionHandler,
AdditionalMeasureProducer,
WeightedInstancesHandler {
/**
* Class index.
*/
private int m_classIndex;
/**
* Shrinkage (Learning rate). Default = no shrinkage.
*/
protected double m_shrinkage = 1.0;
/** The number of successfully generated base classifiers. */
protected int m_NumIterationsPerformed;
/** The model for the mean */
protected ZeroR m_zeroR;
/**
* Returns a string describing this attribute evaluator
* @return a description of the evaluator suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return " Meta classifier that enhances the performance of a regression "
+"base classifier. Each iteration fits a model to the residuals left "
+"by the classifier on the previous iteration. Prediction is "
+"accomplished by adding the predictions of each classifier. "
+"Reducing the shrinkage (learning rate) parameter helps prevent "
+"overfitting and has a smoothing effect but increases the learning "
+"time. For more information see: Friedman, J.H. (1999). Stochastic "
+"Gradient Boosting. Technical Report Stanford University. "
+"http://www-stat.stanford.edu/~jhf/ftp/stobst.ps.";
}
/**
* Default constructor specifying DecisionStump as the classifier
*/
public AdditiveRegression() {
this(new weka.classifiers.trees.DecisionStump());
}
/**
* Constructor which takes base classifier as argument.
*
* @param classifier the base classifier to use
*/
public AdditiveRegression(Classifier classifier) {
m_Classifier = classifier;
}
/**
* String describing default classifier.
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.DecisionStump";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(4);
newVector.addElement(new Option(
"\tSpecify shrinkage rate. "
+"(default = 1.0, ie. no shrinkage)\n",
"S", 1, "-S"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier.<p>
*
* -S shrinkage rate <br>
* Smaller values help prevent overfitting and have a smoothing effect
* (but increase learning time).
* (default = 1.0, ie. no shrinkage). <p>
*
* -D <br>
* Debugging output. <p>
*
* -I max models <br>
* Set the maximum number of models to generate. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String optionString = Utils.getOption('S', options);
if (optionString.length() != 0) {
Double temp = Double.valueOf(optionString);
setShrinkage(temp.doubleValue());
}
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 2];
int current = 0;
options[current++] = "-S"; options[current++] = "" + getShrinkage();
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
current += superOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String shrinkageTipText() {
return "Shrinkage rate. Smaller values help prevent overfitting and "
+ "have a smoothing effect (but increase learning time). "
+"Default = 1.0, ie. no shrinkage.";
}
/**
* Set the shrinkage parameter
*
* @param l the shrinkage rate.
*/
public void setShrinkage(double l) {
m_shrinkage = l;
}
/**
* Get the shrinkage rate.
*
* @return the value of the learning rate
*/
public double getShrinkage() {
return m_shrinkage;
}
/**
* Build the classifier on the supplied data
*
* @param data the training data
* @exception Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
super.buildClassifier(data);
if (data.classAttribute().isNominal()) {
throw new UnsupportedClassTypeException("Class must be numeric!");
}
Instances newData = new Instances(data);
newData.deleteWithMissingClass();
m_classIndex = newData.classIndex();
double sum = 0;
double temp_sum = 0;
// Add the model for the mean first
m_zeroR = new ZeroR();
m_zeroR.buildClassifier(newData);
newData = residualReplace(newData, m_zeroR, false);
for (int i = 0; i < newData.numInstances(); i++) {
sum += newData.instance(i).weight() *
newData.instance(i).classValue() * newData.instance(i).classValue();
}
if (m_Debug) {
System.err.println("Sum of squared residuals "
+"(predicting the mean) : " + sum);
}
m_NumIterationsPerformed = 0;
do {
temp_sum = sum;
// Build the classifier
m_Classifiers[m_NumIterationsPerformed].buildClassifier(newData);
newData = residualReplace(newData, m_Classifiers[m_NumIterationsPerformed], true);
sum = 0;
for (int i = 0; i < newData.numInstances(); i++) {
sum += newData.instance(i).weight() *
newData.instance(i).classValue() * newData.instance(i).classValue();
}
if (m_Debug) {
System.err.println("Sum of squared residuals : "+sum);
}
m_NumIterationsPerformed++;
} while (((temp_sum - sum) > Utils.SMALL) &&
(m_NumIterationsPerformed < m_Classifiers.length));
}
/**
* Classify an instance.
*
* @param inst the instance to predict
* @return a prediction for the instance
* @exception Exception if an error occurs
*/
public double classifyInstance(Instance inst) throws Exception {
double prediction = m_zeroR.classifyInstance(inst);
for (int i = 0; i < m_NumIterationsPerformed; i++) {
double toAdd = m_Classifiers[i].classifyInstance(inst);
toAdd *= getShrinkage();
prediction += toAdd;
}
return prediction;
}
/**
* Replace the class values of the instances from the current iteration
* with residuals ater predicting with the supplied classifier.
*
* @param data the instances to predict
* @param c the classifier to use
* @param useShrinkage whether shrinkage is to be applied to the model's output
* @return a new set of instances with class values replaced by residuals
*/
private Instances residualReplace(Instances data, Classifier c,
boolean useShrinkage) throws Exception {
double pred,residual;
Instances newInst = new Instances(data);
for (int i = 0; i < newInst.numInstances(); i++) {
pred = c.classifyInstance(newInst.instance(i));
if (useShrinkage) {
pred *= getShrinkage();
}
residual = newInst.instance(i).classValue() - pred;
newInst.instance(i).setClassValue(residual);
}
// System.err.print(newInst);
return newInst;
}
/**
* Returns an enumeration of the additional measure names
* @return an enumeration of the measure names
*/
public Enumeration enumerateMeasures() {
Vector newVector = new Vector(1);
newVector.addElement("measureNumIterations");
return newVector.elements();
}
/**
* Returns the value of the named measure
* @param measureName the name of the measure to query for its value
* @return the value of the named measure
* @exception IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
if (additionalMeasureName.compareToIgnoreCase("measureNumIterations") == 0) {
return measureNumIterations();
} else {
throw new IllegalArgumentException(additionalMeasureName
+ " not supported (AdditiveRegression)");
}
}
/**
* return the number of iterations (base classifiers) completed
* @return the number of iterations (same as number of base classifier
* models)
*/
public double measureNumIterations() {
return m_NumIterationsPerformed;
}
/**
* Returns textual description of the classifier.
*
* @return a description of the classifier as a string
*/
public String toString() {
StringBuffer text = new StringBuffer();
if (m_NumIterations == 0) {
return "Classifier hasn't been built yet!";
}
text.append("Additive Regression\n\n");
text.append("ZeroR model\n\n" + m_zeroR + "\n\n");
text.append("Base classifier "
+ getClassifier().getClass().getName()
+ "\n\n");
text.append("" + m_NumIterationsPerformed + " models generated.\n");
for (int i = 0; i < m_NumIterationsPerformed; i++) {
text.append("\nModel number " + i + "\n\n" +
m_Classifiers[i] + "\n");
}
return text.toString();
}
/**
* Main method for testing this class.
*
* @param argv should contain the following arguments:
* -t training file [-T test file] [-c class index]
*/
public static void main(String [] argv) {
try {
System.out.println(Evaluation.evaluateModel(new AdditiveRegression(),
argv));
} catch (Exception e) {
e.printStackTrace();
System.err.println(e.getMessage());
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -