📄 decorate.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Decorate.java
* Copyright (C) 2002 Prem Melville
*
*/
package weka.classifiers.meta;
import weka.classifiers.*;
import java.util.*;
import weka.core.*;
import weka.experiment.*;
/**
* DECORATE is a meta-learner for building diverse ensembles of
* classifiers by using specially constructed artificial training
* examples. Comprehensive experiments have demonstrated that this
* technique is consistently more accurate than the base classifier,
* Bagging and Random Forests. Decorate also obtains higher accuracy than
* Boosting on small training sets, and achieves comparable performance
* on larger training sets. For more
* details see: <p>
*
* Prem Melville and Raymond J. Mooney. <i>Constructing diverse
* classifier ensembles using artificial training examples.</i>
* Proceedings of the Seventeeth International Joint Conference on
* Artificial Intelligence 2003.<p>
*
* Prem Melville and Raymond J. Mooney. <i>Creating diversity in ensembles using artificial data.</i>
* Submitted.<BR><BR>
*
* Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* Decorate (default weka.classifiers.trees.J48()).<p>
*
* -E num <br>
* Specify the desired size of the committee (default 10). <p>
*
* -I iterations <br>
* Set the maximum number of Decorate iterations (default 10). <p>
*
* -S seed <br>
* Seed for random number generator. (default 0).<p>
*
* -R factor <br>
* Factor that determines number of artificial examples to generate. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @author Prem Melville (melville@cs.utexas.edu)
* @version $Revision: 1.1 $ */
public class Decorate extends RandomizableIteratedSingleClassifierEnhancer {
/** Vector of classifiers that make up the committee/ensemble. */
protected Vector m_Committee = null;
/** The desired ensemble size. */
protected int m_DesiredSize = 10;
/** Amount of artificial/random instances to use - specified as a
fraction of the training data size. */
protected double m_ArtSize = 1.0 ;
/** The random number generator. */
protected Random m_Random = new Random(0);
/** Attribute statistics - used for generating artificial examples. */
protected Vector m_AttributeStats = null;
/**
* Constructor.
*/
public Decorate() {
m_Classifier = new weka.classifiers.trees.J48();
}
/**
* String describing default classifier.
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.J48";
}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(8);
newVector.addElement(new Option(
"\tDesired size of ensemble.\n"
+ "\t(default 10)",
"E", 1, "-E"));
newVector.addElement(new Option(
"\tFactor that determines number of artificial examples to generate.\n"
+"\tSpecified proportional to training set size.\n"
+ "\t(default 1.0)",
"R", 1, "-R"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* Decorate (required).<p>
*
* -E num <br>
* Specify the desired size of the committee (default 10). <p>
*
* -I iterations <br>
* Set the maximum number of Decorate iterations (default 10). <p>
*
* -S seed <br>
* Seed for random number generator. (default 0).<p>
*
* -R factor <br>
* Factor that determines number of artificial examples to generate. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String desiredSize = Utils.getOption('E', options);
if (desiredSize.length() != 0) {
setDesiredSize(Integer.parseInt(desiredSize));
} else {
setDesiredSize(10);
}
String artSize = Utils.getOption('R', options);
if (artSize.length() != 0) {
setArtificialSize(Double.parseDouble(artSize));
} else {
setArtificialSize(1.0);
}
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 4];
int current = 0;
options[current++] = "-E"; options[current++] = "" + getDesiredSize();
options[current++] = "-R"; options[current++] = "" + getArtificialSize();
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
current += superOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String desiredSizeTipText() {
return "the desired number of member classifiers in the Decorate ensemble. Decorate may terminate "
+"before this size is reached (depending on the value of numIterations). "
+"Larger ensemble sizes usually lead to more accurate models, but increases "
+"training time and model complexity.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numIterationsTipText() {
return "the maximum number of Decorate iterations to run. Each iteration generates a classifier, "
+"but does not necessarily add it to the ensemble. Decorate stops when the desired ensemble "
+"size is reached. This parameter should be greater than "
+"equal to the desiredSize. If the desiredSize is not being reached it may help to "
+"increase this value.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String artificialSizeTipText() {
return "determines the number of artificial examples to use during training. Specified as "
+"a proportion of the training data. Higher values can increase ensemble diversity.";
}
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "DECORATE is a meta-learner for building diverse ensembles of "
+"classifiers by using specially constructed artificial training "
+"examples. Comprehensive experiments have demonstrated that this "
+"technique is consistently more accurate than the base classifier, Bagging and Random Forests."
+"Decorate also obtains higher accuracy than Boosting on small training sets, and achieves "
+"comparable performance on larger training sets. "
+"For more details see: P. Melville & R. J. Mooney. Constructing diverse classifier ensembles "
+"using artificial training examples (IJCAI 2003).\n"
+"P. Melville & R. J. Mooney. Creating diversity in ensembles using artificial data (submitted).";
}
/**
* Factor that determines number of artificial examples to generate.
*
* @return factor that determines number of artificial examples to generate
*/
public double getArtificialSize() {
return m_ArtSize;
}
/**
* Sets factor that determines number of artificial examples to generate.
*
* @param newwArtSize factor that determines number of artificial examples to generate
*/
public void setArtificialSize(double newArtSize) {
m_ArtSize = newArtSize;
}
/**
* Gets the desired size of the committee.
*
* @return the desired size of the committee
*/
public int getDesiredSize() {
return m_DesiredSize;
}
/**
* Sets the desired size of the committee.
*
* @param newDesiredSize the desired size of the committee
*/
public void setDesiredSize(int newDesiredSize) {
m_DesiredSize = newDesiredSize;
}
/**
* Build Decorate classifier
*
* @param data the training data to be used for generating the classifier
* @exception Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
if(m_Classifier == null) {
throw new Exception("A base classifier has not been specified!");
}
if(data.checkForStringAttributes()) {
throw new UnsupportedAttributeTypeException("Cannot handle string attributes!");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -