📄 attributeselectedclassifier.java
字号:
return "Set the search method. This search method is used "
+"during the attribute selection phase before the classifier is "
+"invoked.";
}
/**
* Sets the search method
*
* @param search the search method with all options set.
*/
public void setSearch(ASSearch search) {
m_Search = search;
}
/**
* Gets the search method used
*
* @return the search method
*/
public ASSearch getSearch() {
return m_Search;
}
/**
* Gets the search specification string, which contains the class name of
* the search method and any options to it
*
* @return the search string.
*/
protected String getSearchSpec() {
ASSearch s = getSearch();
if (s instanceof OptionHandler) {
return s.getClass().getName() + " "
+ Utils.joinOptions(((OptionHandler)s).getOptions());
}
return s.getClass().getName();
}
/**
* Build the classifier on the dimensionally reduced data.
*
* @param data the training data
* @exception Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
if (m_Classifier == null) {
throw new Exception("No base classifier has been set!");
}
if (m_Evaluator == null) {
throw new Exception("No attribute evaluator has been set!");
}
if (m_Search == null) {
throw new Exception("No search method has been set!");
}
Instances newData = new Instances(data);
newData.deleteWithMissingClass();
if (newData.numInstances() == 0) {
m_Classifier.buildClassifier(newData);
return;
}
if (newData.classAttribute().isNominal()) {
m_numClasses = newData.classAttribute().numValues();
} else {
m_numClasses = 1;
}
Instances resampledData = null;
// check to see if training data has all equal weights
double weight = newData.instance(0).weight();
boolean ok = false;
for (int i = 1; i < newData.numInstances(); i++) {
if (newData.instance(i).weight() != weight) {
ok = true;
break;
}
}
if (ok) {
if (!(m_Evaluator instanceof WeightedInstancesHandler) ||
!(m_Classifier instanceof WeightedInstancesHandler)) {
Random r = new Random(1);
for (int i = 0; i < 10; i++) {
r.nextDouble();
}
resampledData = newData.resampleWithWeights(r);
}
} else {
// all equal weights in the training data so just use as is
resampledData = newData;
}
m_AttributeSelection = new AttributeSelection();
m_AttributeSelection.setEvaluator(m_Evaluator);
m_AttributeSelection.setSearch(m_Search);
long start = System.currentTimeMillis();
m_AttributeSelection.
SelectAttributes((m_Evaluator instanceof WeightedInstancesHandler)
? newData
: resampledData);
long end = System.currentTimeMillis();
if (m_Classifier instanceof WeightedInstancesHandler) {
newData = m_AttributeSelection.reduceDimensionality(newData);
m_Classifier.buildClassifier(newData);
} else {
resampledData = m_AttributeSelection.reduceDimensionality(resampledData);
m_Classifier.buildClassifier(resampledData);
}
long end2 = System.currentTimeMillis();
m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected();
m_ReducedHeader =
new Instances((m_Classifier instanceof WeightedInstancesHandler) ?
newData
: resampledData, 0);
m_selectionTime = (double)(end - start);
m_totalTime = (double)(end2 - start);
}
/**
* Classifies a given instance after attribute selection
*
* @param instance the instance to be classified
* @exception Exception if instance could not be classified
* successfully
*/
public double [] distributionForInstance(Instance instance)
throws Exception {
Instance newInstance;
if (m_AttributeSelection == null) {
// throw new Exception("AttributeSelectedClassifier: No model built yet!");
newInstance = instance;
} else {
newInstance = m_AttributeSelection.reduceDimensionality(instance);
}
return m_Classifier.distributionForInstance(newInstance);
}
/**
* Returns the type of graph this classifier
* represents.
*/
public int graphType() {
if (m_Classifier instanceof Drawable)
return ((Drawable)m_Classifier).graphType();
else
return Drawable.NOT_DRAWABLE;
}
/**
* Returns graph describing the classifier (if possible).
*
* @return the graph of the classifier in dotty format
* @exception Exception if the classifier cannot be graphed
*/
public String graph() throws Exception {
if (m_Classifier instanceof Drawable)
return ((Drawable)m_Classifier).graph();
else throw new Exception("Classifier: " + getClassifierSpec()
+ " cannot be graphed");
}
/**
* Output a representation of this classifier
*/
public String toString() {
if (m_AttributeSelection == null) {
return "AttributeSelectedClassifier: No attribute selection possible.\n\n"
+m_Classifier.toString();
}
StringBuffer result = new StringBuffer();
result.append("AttributeSelectedClassifier:\n\n");
result.append(m_AttributeSelection.toResultsString());
result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString());
result.append("\n\nClassifier Model\n"+m_Classifier.toString());
return result.toString();
}
/**
* Additional measure --- number of attributes selected
* @return the number of attributes selected
*/
public double measureNumAttributesSelected() {
return m_numAttributesSelected;
}
/**
* Additional measure --- time taken (milliseconds) to select the attributes
* @return the time taken to select attributes
*/
public double measureSelectionTime() {
return m_selectionTime;
}
/**
* Additional measure --- time taken (milliseconds) to select attributes
* and build the classifier
* @return the total time (select attributes + build classifier)
*/
public double measureTime() {
return m_totalTime;
}
/**
* Returns an enumeration of the additional measure names
* @return an enumeration of the measure names
*/
public Enumeration enumerateMeasures() {
Vector newVector = new Vector(3);
newVector.addElement("measureNumAttributesSelected");
newVector.addElement("measureSelectionTime");
newVector.addElement("measureTime");
if (m_Classifier instanceof AdditionalMeasureProducer) {
Enumeration en = ((AdditionalMeasureProducer)m_Classifier).
enumerateMeasures();
while (en.hasMoreElements()) {
String mname = (String)en.nextElement();
newVector.addElement(mname);
}
}
return newVector.elements();
}
/**
* Returns the value of the named measure
* @param measureName the name of the measure to query for its value
* @return the value of the named measure
* @exception IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) {
return measureNumAttributesSelected();
} else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) {
return measureSelectionTime();
} else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) {
return measureTime();
} else if (m_Classifier instanceof AdditionalMeasureProducer) {
return ((AdditionalMeasureProducer)m_Classifier).
getMeasure(additionalMeasureName);
} else {
throw new IllegalArgumentException(additionalMeasureName
+ " not supported (AttributeSelectedClassifier)");
}
}
/**
* Main method for testing this class.
*
* @param argv should contain the following arguments:
* -t training file [-T test file] [-c class index]
*/
public static void main(String [] argv) {
try {
System.out.println(Evaluation
.evaluateModel(new AttributeSelectedClassifier(),
argv));
} catch (Exception e) {
System.err.println(e.getMessage());
e.printStackTrace();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -