📄 attributeselectedclassifier.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* AttributeSelectedClassifier.java
* Copyright (C) 2000 Mark Hall
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.trees.J48;
import weka.classifiers.SingleClassifierEnhancer;
import java.io.*;
import java.util.*;
import weka.core.*;
import weka.attributeSelection.*;
/**
* Class for running an arbitrary classifier on data that has been reduced
* through attribute selection. <p>
*
* Valid options from the command line are:<p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier.
* Any options for the classifier should appear at the end of the command line
* following a "--".
*.<p>
*
* -E evaluatorstring <br>
* Evaluatorstring should contain the full class name of an attribute
* evaluator followed by any options.
* (required).<p>
*
* -S searchstring <br>
* Searchstring should contain the full class name of a search method
* followed by any options.
* (required). <p>
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @version $Revision: 1.1 $
*/
public class AttributeSelectedClassifier extends SingleClassifierEnhancer
implements OptionHandler, Drawable, AdditionalMeasureProducer,
WeightedInstancesHandler {
/** The attribute selection object */
protected AttributeSelection m_AttributeSelection = null;
/** The attribute evaluator to use */
protected ASEvaluation m_Evaluator =
new weka.attributeSelection.CfsSubsetEval();
/** The search method to use */
protected ASSearch m_Search = new weka.attributeSelection.BestFirst();
/** The header of the dimensionally reduced data */
protected Instances m_ReducedHeader;
/** The number of class vals in the training data (1 if class is numeric) */
protected int m_numClasses;
/** The number of attributes selected by the attribute selection phase */
protected double m_numAttributesSelected;
/** The time taken to select attributes in milliseconds */
protected double m_selectionTime;
/** The time taken to select attributes AND build the classifier */
protected double m_totalTime;
/**
* String describing default classifier.
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.J48";
}
/**
* Default constructor.
*/
public AttributeSelectedClassifier() {
m_Classifier = new weka.classifiers.trees.J48();
}
/**
* Returns a string describing this search method
* @return a description of the search method suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Dimensionality of training and test data is reduced by "
+"attribute selection before being passed on to a classifier.";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(3);
newVector.addElement(new Option(
"\tFull class name of attribute evaluator, followed\n"
+ "\tby its options. (required)\n"
+ "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"",
"E", 1, "-E <attribute evaluator specification>"));
newVector.addElement(new Option(
"\tFull class name of search method, followed\n"
+ "\tby its options. (required)\n"
+ "\teg: \"weka.attributeSelection.BestFirst -D 1\"",
"S", 1, "-S <search method specification>"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier.
* Any options for the classifier should appear at the end of the command line
* following a "--".<p>
*
* -E evaluatorstring <br>
* Evaluatorstring should contain the full class name of an attribute
* evaluator followed by any options.
* (required).<p>
*
* -S searchstring <br>
* Searchstring should contain the full class name of a search method
* followed by any options.
* (required). <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
// same for attribute evaluator
String evaluatorString = Utils.getOption('E', options);
if (evaluatorString.length() == 0) {
throw new Exception("An attribute evaluator must be specified"
+ " with the -E option.");
}
String [] evaluatorSpec = Utils.splitOptions(evaluatorString);
if (evaluatorSpec.length == 0) {
throw new Exception("Invalid attribute evaluator specification string");
}
String evaluatorName = evaluatorSpec[0];
evaluatorSpec[0] = "";
setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec));
// same for search method
String searchString = Utils.getOption('S', options);
if (searchString.length() == 0) {
throw new Exception("A search method must be specified"
+ " with the -S option.");
}
String [] searchSpec = Utils.splitOptions(searchString);
if (searchSpec.length == 0) {
throw new Exception("Invalid search specification string");
}
String searchName = searchSpec[0];
searchSpec[0] = "";
setSearch(ASSearch.forName(searchName, searchSpec));
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 4];
int current = 0;
// same attribute evaluator
options[current++] = "-E";
options[current++] = "" +getEvaluatorSpec();
// same for search
options[current++] = "-S";
options[current++] = "" + getSearchSpec();
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String evaluatorTipText() {
return "Set the attribute evaluator to use. This evaluator is used "
+"during the attribute selection phase before the classifier is "
+"invoked.";
}
/**
* Sets the attribute evaluator
*
* @param evaluator the evaluator with all options set.
*/
public void setEvaluator(ASEvaluation evaluator) {
m_Evaluator = evaluator;
}
/**
* Gets the attribute evaluator used
*
* @return the attribute evaluator
*/
public ASEvaluation getEvaluator() {
return m_Evaluator;
}
/**
* Gets the evaluator specification string, which contains the class name of
* the attribute evaluator and any options to it
*
* @return the evaluator string.
*/
protected String getEvaluatorSpec() {
ASEvaluation e = getEvaluator();
if (e instanceof OptionHandler) {
return e.getClass().getName() + " "
+ Utils.joinOptions(((OptionHandler)e).getOptions());
}
return e.getClass().getName();
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String searchTipText() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -