📄 winnow.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Winnow.java
* Copyright (C) 2002 J. Lindgren
*
*/
package weka.classifiers.functions;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.Filter;
import weka.classifiers.*;
import weka.core.*;
import java.util.*;
/**
*
* Implements Winnow and Balanced Winnow algorithms by
* N. Littlestone. For more information, see<p>
*
* N. Littlestone (1988). <i> Learning quickly when irrelevant
* attributes are abound: A new linear threshold algorithm</i>.
* Machine Learning 2, pp. 285-318.<p>
*
* and
*
* N. Littlestone (1989). <i> Mistake bounds and logarithmic
* linear-threshold learning algorithms</i>. Technical report
* UCSC-CRL-89-11, University of California, Santa Cruz.<p>
*
* Valid options are:<p>
*
* -L <br>
* Use the baLanced variant (default: false)<p>
*
* -I num <br>
* The number of iterations to be performed. (default 1)<p>
*
* -A double <br>
* Promotion coefficient alpha. (default 2.0)<p>
*
* -B double <br>
* Demotion coefficient beta. (default 0.5)<p>
*
* -W double <br>
* Starting weights of the prediction coeffs. (default 2.0)<p>
*
* -H double <br>
* Prediction threshold. (default -1.0 == number of attributes)<p>
*
* -S int <br>
* Random seed to shuffle the input. (default 1), -1 == no shuffling<p>
*
* @author J. Lindgren (jtlindgr<at>cs.helsinki.fi)
* @version $Revision: 1.1 $
*/
public class Winnow extends Classifier implements UpdateableClassifier {
/** Use the balanced variant? **/
protected boolean m_Balanced;
/** The number of iterations **/
protected int m_numIterations = 1;
/** The promotion coefficient **/
protected double m_Alpha = 2.0;
/** The demotion coefficient **/
protected double m_Beta = 0.5;
/** Prediction threshold, <0 == numAttributes **/
protected double m_Threshold = -1.0;
/** Random seed used for shuffling the dataset, -1 == disable **/
protected int m_Seed = 1;
/** Accumulated mistake count (for statistics) **/
protected int m_Mistakes;
/** Starting weights for the prediction vector(s) **/
protected double m_defaultWeight = 2.0;
/** The weight vectors for prediction **/
private double[] m_predPosVector = null;
private double[] m_predNegVector = null;
/** The true threshold used for prediction **/
private double m_actualThreshold;
/** The training instances */
private Instances m_Train = null;
/** The filter used to make attributes numeric. */
private NominalToBinary m_NominalToBinary;
/** The filter used to get rid of missing values. */
private ReplaceMissingValues m_ReplaceMissingValues;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Implements Winnow and Balanced Winnow algorithms by "
+ "Littlestone. For more information, see\n\n"
+ "N. Littlestone (1988). \"Learning quickly when irrelevant "
+ "attributes are abound: A new linear threshold algorithm\". "
+ "Machine Learning 2, pp. 285-318.\n\n"
+ "and\n\n"
+ "N. Littlestone (1989). \"Mistake bounds and logarithmic "
+ "linear-threshold learning algorithms\". Technical report "
+ "UCSC-CRL-89-11, University of California, Santa Cruz.\n\n"
+ "Does classification for problems with nominal attributes "
+ "(which it converts into binary attributes).";
}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.addElement(new Option("\tUse the baLanced version\n"
+ "\t(default false)",
"L", 0, "-L"));
newVector.addElement(new Option("\tThe number of iterations to be performed.\n"
+ "\t(default 1)",
"I", 1, "-I <int>"));
newVector.addElement(new Option("\tPromotion coefficient alpha.\n"
+ "\t(default 2.0)",
"A", 1, "-A <double>"));
newVector.addElement(new Option("\tDemotion coefficient beta.\n"
+ "\t(default 0.5)",
"B", 1, "-B <double>"));
newVector.addElement(new Option("\tPrediction threshold.\n"
+ "\t(default -1.0 == number of attributes)",
"H", 1, "-H <double>"));
newVector.addElement(new Option("\tStarting weights.\n"
+ "\t(default 2.0)",
"W", 1, "-W <double>"));
newVector.addElement(new Option("\tDefault random seed.\n"
+ "\t(default 1)",
"S", 1, "-S <int>"));
return newVector.elements();
}
/**
* Parses a given list of options.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
m_Balanced = Utils.getFlag('L', options);
String iterationsString = Utils.getOption('I', options);
if (iterationsString.length() != 0) {
m_numIterations = Integer.parseInt(iterationsString);
}
String alphaString = Utils.getOption('A', options);
if (alphaString.length() != 0) {
m_Alpha = (new Double(alphaString)).doubleValue();
}
String betaString = Utils.getOption('B', options);
if (betaString.length() != 0) {
m_Beta = (new Double(betaString)).doubleValue();
}
String tString = Utils.getOption('H', options);
if (tString.length() != 0) {
m_Threshold = (new Double(tString)).doubleValue();
}
String wString = Utils.getOption('W', options);
if (wString.length() != 0) {
m_defaultWeight = (new Double(wString)).doubleValue();
}
String rString = Utils.getOption('S', options);
if (rString.length() != 0) {
m_Seed = Integer.parseInt(rString);
}
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] options = new String [20];
int current = 0;
if(m_Balanced) {
options[current++] = "-L";
}
options[current++] = "-I"; options[current++] = "" + m_numIterations;
options[current++] = "-A"; options[current++] = "" + m_Alpha;
options[current++] = "-B"; options[current++] = "" + m_Beta;
options[current++] = "-H"; options[current++] = "" + m_Threshold;
options[current++] = "-W"; options[current++] = "" + m_defaultWeight;
options[current++] = "-S"; options[current++] = "" + m_Seed;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Builds the classifier
*
* @exception Exception if something goes wrong during building
*/
public void buildClassifier(Instances insts) throws Exception {
if (insts.checkForStringAttributes()) {
throw new UnsupportedAttributeTypeException("Can't handle string attributes!");
}
if (insts.numClasses() > 2) {
throw new Exception("Can only handle two-class datasets!");
}
if (insts.classAttribute().isNumeric()) {
throw new UnsupportedClassTypeException("Can't handle a numeric class!");
}
Enumeration enu = insts.enumerateAttributes();
while (enu.hasMoreElements()) {
Attribute attr = (Attribute) enu.nextElement();
if (!attr.isNominal()) {
throw new UnsupportedAttributeTypeException("Winnow: only nominal attributes, "
+ "please.");
}
}
// Filter data
m_Train = new Instances(insts);
m_Train.deleteWithMissingClass();
m_ReplaceMissingValues = new ReplaceMissingValues();
m_ReplaceMissingValues.setInputFormat(m_Train);
m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
m_NominalToBinary = new NominalToBinary();
m_NominalToBinary.setInputFormat(m_Train);
m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
/** Randomize training data */
if(m_Seed != -1) {
m_Train.randomize(new Random(m_Seed));
}
/** Make space to store weights */
m_predPosVector = new double[m_Train.numAttributes()];
if(m_Balanced) {
m_predNegVector = new double[m_Train.numAttributes()];
}
/** Initialize the weights to starting values **/
for(int i = 0; i < m_Train.numAttributes(); i++)
m_predPosVector[i] = m_defaultWeight;
if(m_Balanced) {
for(int i = 0; i < m_Train.numAttributes(); i++) {
m_predNegVector[i] = m_defaultWeight;
}
}
/** Set actual prediction threshold **/
if(m_Threshold<0) {
m_actualThreshold = (double)m_Train.numAttributes()-1;
} else {
m_actualThreshold = m_Threshold;
}
m_Mistakes=0;
/** Compute the weight vectors **/
if(m_Balanced) {
for (int it = 0; it < m_numIterations; it++) {
for (int i = 0; i < m_Train.numInstances(); i++) {
actualUpdateClassifierBalanced(m_Train.instance(i));
}
}
} else {
for (int it = 0; it < m_numIterations; it++) {
for (int i = 0; i < m_Train.numInstances(); i++) {
actualUpdateClassifier(m_Train.instance(i));
}
}
}
}
/**
* Updates the classifier with a new learning example
*
* @exception Exception if something goes wrong
*/
public void updateClassifier(Instance instance) throws Exception {
m_ReplaceMissingValues.input(instance);
m_ReplaceMissingValues.batchFinished();
Instance filtered = m_ReplaceMissingValues.output();
m_NominalToBinary.input(filtered);
m_NominalToBinary.batchFinished();
filtered = m_NominalToBinary.output();
if(m_Balanced) {
actualUpdateClassifierBalanced(filtered);
} else {
actualUpdateClassifier(filtered);
}
}
/**
* Actual update routine for prefiltered instances
*
* @exception Exception if something goes wrong
*/
private void actualUpdateClassifier(Instance inst) throws Exception {
double posmultiplier;
if (!inst.classIsMissing()) {
double prediction = makePrediction(inst);
if (prediction != inst.classValue()) {
m_Mistakes++;
if(prediction == 0) {
/* false neg: promote */
posmultiplier=m_Alpha;
} else {
/* false pos: demote */
posmultiplier=m_Beta;
}
int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
for(int l = 0 ; l < n1 ; l++) {
if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {
m_predPosVector[inst.index(l)]*=posmultiplier;
}
}
//Utils.normalize(m_predPosVector);
}
}
else {
System.out.println("CLASS MISSING");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -