⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cspars.cpp

📁 一个2D电磁场FEM计算的VC++源程序
💻 CPP
字号:
#include <stdafx.h>
#include <math.h>
#include <stdio.h>
#include "fkn.h"
#include "fknDlg.h"
#include "complex.h"
#include "spars.h"

CComplexEntry::CComplexEntry()
{
	next=NULL;
	x=0;
	c=0;
}

CBigComplexLinProb::CBigComplexLinProb()
{
	n=0;
}

CBigComplexLinProb::~CBigComplexLinProb()
{
	if (n==0) return;

	int i;
	CComplexEntry *uo,*ui;

	free(b); free(P); free(R);
	free(V); free(U); free(Z);

	for(i=0;i<n;i++)
	{
		ui=M[i];
		do{
			uo=ui;
			ui=uo->next;
			delete uo;
		} while(ui!=NULL);
	}

	free(M);
}

int CBigComplexLinProb::Create(int d, int bw, int nodes)
{
	int i;

	bdw=bw;
	NumNodes=nodes;
	b=(CComplex *)calloc(d,sizeof(CComplex));
	V=(CComplex *)calloc(d,sizeof(CComplex));
	P=(CComplex *)calloc(d,sizeof(CComplex));
	R=(CComplex *)calloc(d,sizeof(CComplex));
	U=(CComplex *)calloc(d,sizeof(CComplex));
	Z=(CComplex *)calloc(d,sizeof(CComplex));

	M=(CComplexEntry **)calloc(d,sizeof(CComplexEntry *));
	n=d;

	for(i=0;i<d;i++){
		M[i] = new CComplexEntry;
		M[i]->c = i;
	}

	return 1;
}

void CBigComplexLinProb::Put(CComplex v, int p, int q)
{
	CComplexEntry *e,*l;
	int i;

	if(q<p){ i=p; p=q; q=i; }

	e=M[p];

	while((e->c < q) && (e->next != NULL))
	{
		l=e; 
		e=e->next;
	}

	if(e->c == q){
		e->x=v;
		return;
	}

	CComplexEntry *m = new CComplexEntry;
	
	if((e->next == NULL) && (q > e->c)){
		e->next = m;
		m->c = q;
		m->x = v;
	}
	else{
		l->next=m;
		m->next=e;
		m->c=q;
		m->x=v;
	}

	return;
}

CComplex CBigComplexLinProb::Get(int p, int q)
{
	CComplexEntry *e;

	if(q<p){ int i; i=p; p=q; q=i; }

	e=M[p];

	while((e->c < q) && (e->next != NULL)) e=e->next;

	if(e->c == q) return e->x;

	// if no entry in the list, this entry must be zero...
	return CComplex(0,0);
}

void CBigComplexLinProb::MultA(CComplex *X, CComplex *Y)
{
	int i;
	CComplexEntry *e;

	for(i=0;i<n;i++) Y[i]=0;

	for(i=0;i<n;i++){
		Y[i]+=(M[i]->x*X[i]);
		e=M[i]->next;
		while(e!=NULL)
		{
			Y[i]+=(e->x*X[e->c]);
			Y[e->c]+=(e->x*X[i]);
			e=e->next;
		}
	}
}

void CBigComplexLinProb::MultConjA(CComplex *X, CComplex *Y)
{
	int i;
	CComplexEntry *e;

	for(i=0;i<n;i++) Y[i]=0;

	for(i=0;i<n;i++){
		Y[i]+=(M[i]->x.Conj()*X[i]);
		e=M[i]->next;
		while(e!=NULL)
		{
			Y[i]+=(e->x.Conj()*X[e->c]);
			Y[e->c]+=(e->x.Conj()*X[i]);
			e=e->next;
		}
	}
}

void CBigComplexLinProb::MultAPPA(CComplex *X, CComplex *Y)
{
	int i;
	MultA(X,Z);
	MultPC(Z,Y);
	for(i=0;i<n;i++) Y[i].im=-Y[i].im;
	MultPC(Y,Z);
	MultA(Z,Y);
	for(i=0;i<n;i++) Y[i].im=-Y[i].im;
}

CComplex CBigComplexLinProb::Dot(CComplex *x, CComplex *y)
{
	int i;
	CComplex z;
	
	z=0;
	for(i=0;i<n;i++) z+=x[i]*y[i];
	
	return z;
}

CComplex CBigComplexLinProb::ConjDot(CComplex *x, CComplex *y)
{
	int i;
	CComplex z;
	
	z=0;
	for(i=0;i<n;i++) z+=x[i].Conj()*y[i];
	
	return z;
}

void CBigComplexLinProb::MultPC(CComplex *X, CComplex *Y)
{
/*	// Jacobi preconditioner:
	int i;
	for(i=0;i<n;i++) Y[i]=X[i]/M[i]->x; */

	// SSOR preconditioner
	int i;
	CComplex c;
	CComplexEntry *e;

	c= Lambda*(2-Lambda);
	for(i=0;i<n;i++) Y[i]=X[i]*c;
	
	// invert Lower Triangle;
	for(i=0;i<n;i++){
		Y[i]/= M[i]->x;
		e=M[i]->next;
		while(e!=NULL)
		{
			Y[e->c] -= e->x * Y[i] * Lambda;
			e=e->next;
		}	
	}

	for(i=0;i<n;i++) Y[i]*=M[i]->x;

	// invert Upper Triangle
	for(i=n-1;i>=0;i--){
		e=M[i]->next;
		while(e!=NULL)
		{
			Y[i] -= e->x * Y[e->c] * Lambda;
			e=e->next;
		}
		Y[i]/= M[i]->x;
	}
}

int CBigComplexLinProb::PBCGSolve(int flag)
{
	int i;
	CComplex res,res_new,del,rho,pAp;
	double er,res_o;

	// quick check for most obvious sign of singularity;
	for(i=0;i<n;i++) if((M[i]->x.re==0) && (M[i]->x.im==0)){
		fprintf(stderr,"singular flag tripped.");
		return 0;
	}

	// initialize progress bar;
	TheView->SetDlgItemText(IDC_FRAME1,"BiConjugate Gradient Solver");
	TheView->m_prog1.SetPos(0);
	int prg1=0;
	int prg2;
	
	// Guess for best relaxation parameter
	Lambda=1.5;

	// residual with V=0
	MultPC(b,Z);
	res_o=abs(Dot(Z,b));
	if(res_o==0) return 1;

	// if flag is false, initialize V with zeros;
	if (flag==0) for(i=0;i<n;i++) V[i]=0;

	// form residual;
	MultA(V,R);
	for(i=0;i<n;i++) R[i]=b[i]-R[i];
	
	// form initial search direction;
	MultPC(R,Z);
	for(i=0;i<n;i++) P[i]=Z[i];
	res=Dot(Z,R);

	// do iteration;
	do{
		// step i)
		MultA(P,U);
		pAp=Dot(P,U);
		del=res/pAp;

		// step ii)
		for(i=0;i<n;i++) V[i]+=(del*P[i]);
					
		// step iii)
		for(i=0;i<n;i++) R[i]-=(del*U[i]);
			
		// step iv)
		MultPC(R,Z);
		res_new=Dot(Z,R);
		rho=res_new/res;
		res=res_new;

		// step v)
		for(i=0;i<n;i++) P[i]=Z[i]+(rho*P[i]);

		er=sqrt(res.Abs()/res_o);
	
		// add a little bit more precision to account
		// for "bumpy" nature of BiCG
		prg2=(int) (20.*log10(er)/(log10(Precision)-2.));
		if(prg2>prg1){
			prg1=prg2;
			prg2=(prg1*5);
			if(prg2>100) prg2=100;
			TheView->m_prog1.SetPos(prg2);
			TheView->InvalidateRect(NULL, FALSE);
			TheView->UpdateWindow();
		}

	} while(er>(Precision*0.01)); 

	return 1;
}		

void CBigComplexLinProb::SetValue(int i, CComplex x)
{
    int k,fst,lst;
    CComplex z;
    	
	if(bdw==0){
		fst=0;
		lst=n;
	}
	else{
		fst=i-bdw; if (fst<0) fst=0;
		lst=i+bdw; if (lst>NumNodes) lst=NumNodes;
	}

	for(k=fst;k<n;k++)
    {
		if (k==lst) k=NumNodes;
		
		z=Get(k,i);
		if((z.re!=0) || (z.im!=0)){
			b[k]-=(z*x);
			if(i!=k){
				z=0;
				Put(z,k,i);
			}
		}
		
    }
    b[i]=Get(i,i)*x;
}

void CBigComplexLinProb::Wipe()
{
	int i;
	CComplexEntry *e;

	for(i=0;i<n;i++){
		b[i]=0;
		e=M[i];
		do{
			e->x=0;
			e=e->next;
		} while(e!=NULL);
	}
}

void CBigComplexLinProb::AntiPeriodicity(int i, int j)
{
	int k,fst,lst;
	CComplex v1,v2,c;

	if (j<i) {k=j;j=i;i=k;}

	if(bdw==0){
		fst=0;
		lst=n;
	}
	else{
		fst=i-bdw; if (fst<0) fst=0;
		lst=j+bdw; if (lst>NumNodes-1) lst=NumNodes-1;
	}

	for(k=fst;k<n;k++)
	{
		if((k!=i) && (k!=j))
		{
			v1=Get(k,i);
			v2=Get(k,j);
			if ((v1!=0) || (v2!=0)){
				c=(v1-v2)/2.;
				Put(c,k,i);
				Put(-c,k,j);
			}
		}
		if((k==i+bdw) && (k<j-bdw) && (bdw!=0)) k=j-bdw;
		else if(k==lst) k=NumNodes;
	}

	c=0.5*(Get(i,i)+Get(j,j));
	Put(c,i,i);
	Put(c,j,j);

	c=0.5*(b[i]-b[j]);
	b[i]=c;
	b[j]=-c;
}

void CBigComplexLinProb::Periodicity(int i, int j)
{
	int k,fst,lst;
	CComplex v1,v2,c;

	if (j<i) {k=j;j=i;i=k;}
	
	if(bdw==0){
		fst=0;
		lst=n;
	}
	else{
		fst=i-bdw; if (fst<0) fst=0;
		lst=j+bdw; if (lst>NumNodes-1) lst=NumNodes-1;
	}

	for(k=fst;k<n;k++){
		if((k!=i) && (k!=j))
		{
			v1=Get(k,i);
			v2=Get(k,j);
			if ((v1!=0) || (v2!=0)) {
				c=(v1+v2)/2.;
				Put(c,k,i);
				Put(c,k,j);
			}	
		}
		if((k==i+bdw) && (k<j-bdw) && (bdw!=0)) k=j-bdw;
		else if(k==lst) k=NumNodes;
	}

	c=(Get(i,i)+Get(j,j))/2.;
	Put(c,i,i);
	Put(c,j,j);

	c=0.5*(b[i]+b[j]);
	b[i]=c;
	b[j]=c;
}


// Alternate solver that could be used for the heck of it
// The preconditioner hasn't been integrated with the QMR solver yet.
int CBigComplexLinProb::QMRSolve(int flag)
{
	int i;
	CComplex alpha,beta,tau,rho,theta,sigma,psi,z;
	double tau_o,er;

	// quick check for most obvious sign of singularity;
	for(i=0;i<n;i++) if((M[i]->x.re==0) && (M[i]->x.im==0)){
		fprintf(stderr,"singular flag tripped.");
		return 0;
	}

	// initialize progress bar;
	TheView->SetDlgItemText(IDC_FRAME1,"QMR Solver");
	TheView->m_prog1.SetPos(0);
	int prg1=0;
	int prg2;
	
	// if flag is false, initialize V with zeros;
	if (flag==0) for(i=0;i<n;i++) V[i]=0;
	
	// form residual and initial search direction;
	MultA(V,R);
	for(i=0;i<n;i++){
		R[i]=b[i]-R[i];
		P[i]=R[i];
		Z[i]=0;
	}
	
	tau=ConjDot(R,R);
	rho=Dot(P,R);
	theta=0;

	tau_o=Re(tau);
	
	// do iteration;
	int k=0;
	do{
	
		// step 1)
		MultA(P,U);

		// step 2)
		sigma=Dot(P,U);

		// step 3)
		alpha=rho/sigma;
		for(i=0;i<n;i++) R[i] = R[i] - alpha*U[i];

		// step 4)
		z=theta;
		theta = ConjDot(R,R)/tau;
		psi = 1/(1+theta);
		tau = tau*theta*psi;

		for(i=0;i<n;i++){
			Z[i]=Z[i]*psi*z + P[i]*psi*alpha;
			V[i] = V[i]+Z[i];
		}
					
		// step 7)
		z=rho;
		rho=Dot(R,R);
		beta=rho/z;
		for(i=0;i<n;i++) P[i]=R[i]+P[i]*beta;
	
		er=sqrt(tau.Abs()/tau_o);
		
		prg2=(int) (20.*log10(er)/(log10(Precision)));
		if(prg2>prg1){
			prg1=prg2;
			prg2=(prg1*5);
			if(prg2>100) prg2=100;
			TheView->m_prog1.SetPos(prg2);
			TheView->InvalidateRect(NULL, FALSE);
			TheView->UpdateWindow();
		}

	} while(er > Precision); 

	return 1;
}		

// Make into a Hermitian problem and solve.
// This ought to be slower than BiPCG, but the idea is to avoid
// the situations where BiPCG breaks down.
// This works, but to do the whole problem this way can be
// painfully slow in practice.
int CBigComplexLinProb::PCGSQSolve(int flag)
{
	int i;
	CComplex res,res_new,del,rho,pAp;
	double er,res_o;

	// quick check for most obvious sign of singularity;
	for(i=0;i<n;i++) if((M[i]->x.re==0) && (M[i]->x.im==0)){
		fprintf(stderr,"singular flag tripped.");
		return 0;
	}

	// initialize progress bar;
	TheView->SetDlgItemText(IDC_FRAME1,"Conjugate Gradient Solver");
	TheView->m_prog1.SetPos(0);
	int prg1=0;
	int prg2;
	
	// Guess for best relaxation parameter
	Lambda=1.0;

	// Operate on RHS to scale for squared problem
	MultPC(b,Z);
	for(i=0;i<n;i++) Z[i].im=-Z[i].im;
	MultPC(Z,b);
	MultA(b,Z);
	for(i=0;i<n;i++) b[i]=Z[i].Conj();


	// residual with V=0
	res_o=abs(ConjDot(b,b));
	if(res_o==0) return 1;

	// if flag is false, initialize V with zeros;
	if (flag==0) for(i=0;i<n;i++) V[i]=0;

	// form residual;
	MultAPPA(V,R);
	for(i=0;i<n;i++) R[i]=b[i]-R[i];
	
	// form initial search direction
	for(i=0;i<n;i++) P[i]=R[i];
	res=ConjDot(R,R);

	// do iteration;
	do{
		// step i)
		MultAPPA(P,U);
		pAp=ConjDot(P,U);
		del=res/pAp;

		// step ii)
		for(i=0;i<n;i++) V[i]+=(del*P[i]);
					
		// step iii)
		for(i=0;i<n;i++) R[i]-=(del*U[i]);
			
		// step iv)
		res_new=ConjDot(R,R);
		rho=res_new/res;
		res=res_new;

		// step v)
		for(i=0;i<n;i++) P[i]=R[i]+(rho*P[i]);

		er=sqrt(res.Abs()/res_o);
	
		// Display convergence results
		prg2=(int) (20.*log10(er)/log10(Precision));
		if(prg2>prg1){
			prg1=prg2;
			prg2=(prg1*5);
			if(prg2>100) prg2=100;
			TheView->m_prog1.SetPos(prg2);
			TheView->InvalidateRect(NULL, FALSE);
			TheView->UpdateWindow();
		}

	} while(er>Precision); 

	return 1;
}		

// Make into a Hermitian problem and solve.
// Just use for a few iterations to get a good starting point
// for the regular BiPCG, which can sometimes get initialized
// with a pathological starting point.
int CBigComplexLinProb::PCGSQStart(int flag)
{
	int i,k;
	CComplex res,res_new,del,rho,pAp;

	// quick check for most obvious sign of singularity;
	for(i=0;i<n;i++) if((M[i]->x.re==0) && (M[i]->x.im==0)){
		fprintf(stderr,"singular flag tripped.");
		return 0;
	}

	// Guess for best relaxation parameter
	Lambda=1.0;

	// Operate on RHS to scale for squared problem
	MultPC(b,Z);
	for(i=0;i<n;i++) Z[i].im=-Z[i].im;
	MultPC(Z,P);
	MultA(P,Z);
	for(i=0;i<n;i++) P[i]=Z[i].Conj();

	// initialize V with zeros;
	for(i=0;i<n;i++) V[i]=0;

	// form residual;
	MultAPPA(V,R);
	for(i=0;i<n;i++) R[i]=P[i]-R[i];
	
	// form initial search direction
	for(i=0;i<n;i++) P[i]=R[i];
	res=ConjDot(R,R);

	// do iteration;
	for(k=0;k<3;k++)
	{
		// step i)
		MultAPPA(P,U);
		pAp=ConjDot(P,U);
		del=res/pAp;

		// step ii)
		for(i=0;i<n;i++) V[i]+=(del*P[i]);
					
		// step iii)
		for(i=0;i<n;i++) R[i]-=(del*U[i]);
			
		// step iv)
		res_new=ConjDot(R,R);
		rho=res_new/res;
		res=res_new;

		// step v)
		for(i=0;i<n;i++) P[i]=R[i]+(rho*P[i]);

	} 

	return 1;
}		

// Slightly modified version of the preconditioned biconjugate gradient.
// This version calls PCGSQStart to do a small number of iterations,
// moving the starting point for PBCG away from the pathological starting
// points that can sometimes crop up.
int CBigComplexLinProb::PBCGSolveMod(int flag)
{
	int i;
	CComplex res,res_new,del,rho,pAp;
	double er;
	static double res_o;

	// initialize progress bar;
	TheView->m_prog1.SetPos(0);
	int prg1=0;
	int prg2;

	// get starting point; singularity check;
	if(flag==FALSE){
		TheView->SetDlgItemText(IDC_FRAME1,"Initializing Solver");
		if (PCGSQStart(flag)==0) return 0;
	}
	TheView->SetDlgItemText(IDC_FRAME1,"BiConjugate Gradient Solver");

	// Guess for best relaxation parameter
	Lambda=1.5;

	// residual with V from PCGSQ
	// if flag==TRUE, carry residual target over from the last iteration.
	if (flag==FALSE)
	{
		MultPC(V,Z);
		res_o=abs(Dot(Z,V));
		if(res_o==0) return 1;
	}

	// form residual;
	MultA(V,R);
	for(i=0;i<n;i++) R[i]=b[i]-R[i];
	
	// form initial search direction;
	MultPC(R,Z);
	for(i=0;i<n;i++) P[i]=Z[i];
	res=Dot(Z,R);

	// do iteration;
	do{
		// step i)
		MultA(P,U);
		pAp=Dot(P,U);
		del=res/pAp;

		// step ii)
		for(i=0;i<n;i++) V[i]+=(del*P[i]);
					
		// step iii)
		for(i=0;i<n;i++) R[i]-=(del*U[i]);
			
		// step iv)
		MultPC(R,Z);
		res_new=Dot(Z,R);
		rho=res_new/res;
		res=res_new;

		// step v)
		for(i=0;i<n;i++) P[i]=Z[i]+(rho*P[i]);

		er=sqrt(res.Abs()/res_o);
	
		// add a little bit more precision to account
		// for "bumpy" nature of BiCG
		prg2=(int) (20.*log10(er)/(log10(Precision)-2.));
		if(prg2>prg1){
			prg1=prg2;
			prg2=(prg1*5);
			if(prg2>100) prg2=100;
			TheView->m_prog1.SetPos(prg2);
			TheView->InvalidateRect(NULL, FALSE);
			TheView->UpdateWindow();
		}

	} while(er>(Precision*0.01)); 

	return 1;
}		

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -