⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 prob3big.cpp

📁 一个2D电磁场FEM计算的VC++源程序
💻 CPP
📖 第 1 页 / 共 2 页
字号:
			if (blockproplist[k].LamType==0){
				mu=blockproplist[k].LamFill;
				meshele[i].mu1=blockproplist[k].mu_x*mu;
				meshele[i].mu2=blockproplist[k].mu_y*mu;
			}
			if (blockproplist[k].LamType==1){
				mu=blockproplist[k].LamFill;
				K=blockproplist[k].mu_x;
				meshele[i].mu1=K*mu + (1.-mu);
				meshele[i].mu2=K/(mu + K*(1.-mu));
			}
			if (blockproplist[k].LamType==2){
				mu=blockproplist[k].LamFill;
				K=blockproplist[k].mu_y;
				meshele[i].mu1=K*mu + (1.-mu);
				meshele[i].mu2=K/(mu + K*(1.-mu));
			}
			if (blockproplist[k].LamType>2)
			{
				meshele[i].mu1=1;
				meshele[i].mu2=1;
			}
		}
		else{ 
			k=meshele[i].blk;
		
			if ((blockproplist[k].LamType==0) &&
			    (meshele[i].mu1==meshele[i].mu2)
				&&(blockproplist[k].BHpoints>0))
			{
				//	Derive B directly from energy;
				v[0]=0;v[1]=0;v[2]=0;
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						v[j]+=(Mx[j][w]+My[j][w])*L.V[n[w]];
				for(j=0,dv=0;j<3;j++) dv+=L.V[n[j]]*v[j];
				dv*=(10000.*c*c/vol); 
				B=sqrt(fabs(dv));

				// find out new mu from saturation curve;
				blockproplist[k].GetBHProps(B,mu,dv);
				mu=1./(muo*mu);
				meshele[i].mu1=mu;
				meshele[i].mu2=mu;
				for(j=0;j<3;j++){
					for(w=0,v[j]=0;w<3;w++)
						v[j]+=(Mx[j][w]+My[j][w])*L.V[n[w]];
				}

				K=-200.*c*c*c*dv/vol;
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						Mn[j][w]=K*v[j]*v[w];
			}

			if ((blockproplist[k].LamType==1) && (blockproplist[k].BHpoints>0)){
				
				//	Derive B directly from energy;
				t=blockproplist[k].LamFill;
				v[0]=0;v[1]=0;v[2]=0;
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						v[j]+=(Mx[j][w]+My[j][w]/(t*t))*L.V[n[w]];
				for(j=0,dv=0;j<3;j++) dv+=L.V[n[j]]*v[j];
				dv*=(10000.*c*c/vol); 
				B=sqrt(fabs(dv));

				// Evaluate BH curve
				blockproplist[k].GetBHProps(B,mu,dv);
				mu=1./(muo*mu);
				meshele[i].mu1=mu*t;
				meshele[i].mu2=mu/(t+mu*(1.-t));
				for(j=0;j<3;j++){
					for(w=0,v[j]=0,u[j]=0;w<3;w++)
					{
						v[j]+=(My[j][w]/t+Mx[j][w])*L.V[n[w]];
						u[j]+=(My[j][w]/t + t*Mx[j][w])*L.V[n[w]];
					}
				}
				K=-100.*c*c*c*dv/(vol);
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						Mn[j][w]=K*(v[j]*u[w]+v[w]*u[j]);
			}
			if ((blockproplist[k].LamType==2) && (blockproplist[k].BHpoints>0)){

				//	Derive B directly from energy;
				t=blockproplist[k].LamFill;
				v[0]=0;v[1]=0;v[2]=0;
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						v[j]+=(Mx[j][w]/(t*t)+My[j][w])*L.V[n[w]];
				for(j=0,dv=0;j<3;j++) dv+=L.V[n[j]]*v[j];
				dv*=(10000.*c*c/vol); 
				B=sqrt(fabs(dv));
				
				// Evaluate BH curve
				blockproplist[k].GetBHProps(B,mu,dv);
				mu=1./(muo*mu);
				meshele[i].mu2=mu*t;
				meshele[i].mu1=mu/(t+mu*(1.-t));

				for(j=0;j<3;j++){
					for(w=0,v[j]=0,u[j]=0;w<3;w++)
					{
						v[j]+=(Mx[j][w]/t + My[j][w])*L.V[n[w]];
						u[j]+=(Mx[j][w]/t + t*My[j][w])*L.V[n[w]];
					}
				}
				K=-100.*c*c*c*dv/(vol);
				for(j=0;j<3;j++)
					for(w=0;w<3;w++)
						Mn[j][w]=K*(v[j]*u[w]+v[w]*u[j]);
		
			}
		}

		// "Warp" the permeability of this element if part of 
		// the conformally mapped external region
		if((labellist[meshele[i].lbl].IsExternal) && (Iter==0) && (sdi_iter==0))
		{
			double Z=(meshnode[n[0]].y+meshnode[n[1]].y+meshnode[n[2]].y)/3. - extZo;
			double kludge=(R*R+Z*Z)*extRi/(extRo*extRo*extRo);
			meshele[i].mu1/=kludge;
			meshele[i].mu2/=kludge;
		}

		// combine block matrices into global matrices;
		for(j=0;j<3;j++)
			for(k=0;k<3;k++){
				Me[j][k]+= (Mx[j][k]/Re(El->mu2) + My[j][k]/Re(El->mu1) + Mn[j][k]);
				be[j]+=Mn[j][k]*L.V[n[k]];
			}
			
		for (j=0;j<3;j++){
			for (k=j;k<3;k++)
				L.Put(L.Get(n[j],n[k])-Me[j][k],n[j],n[k]);
			L.b[n[j]]-=be[j];
		}
	}

	// add in contribution from point currents;
	for(i=0;i<NumNodes;i++)
		if(meshnode[i].bc>=0)
		{
			r=meshnode[i].x;
			L.b[i]+=(0.01*nodeproplist[meshnode[i].bc].Jr*2.*r);
		}

	// apply fixed boundary conditions at points;
	for(i=0;i<NumNodes;i++)
	{
		if(fabs(meshnode[i].x)<(units[LengthUnits]*1.e-06)) L.SetValue(i,0.);
		else 
			if(meshnode[i].bc >=0)
			if((nodeproplist[meshnode[i].bc].Jr==0) &&
			   (nodeproplist[meshnode[i].bc].Ji==0) && (sdi_iter==0))
					L.SetValue(i,nodeproplist[meshnode[i].bc].Ar/c);
	}

	// apply fixed boundary conditions along segments;
	for(i=0;i<NumEls;i++)
		for(j=0;j<3;j++){
			k=j+1; if(k==3) k=0;
			if(meshele[i].e[j]>=0)
			if(lineproplist[ meshele[i].e[j] ].BdryFormat==0)
			{
				if(Coords==0){
					// first point on the side;
					x=meshnode[meshele[i].p[j]].x;
					y=meshnode[meshele[i].p[j]].y;
					x/=units[LengthUnits]; y/=units[LengthUnits];
					s=meshele[i].e[j];
					a=lineproplist[s].A0 + x*lineproplist[s].A1 +
					  y*lineproplist[s].A2;
					// just take ``real'' component.
					a*=cos(lineproplist[s].phi*DEG); 
					if(x!=0) L.SetValue(meshele[i].p[j],a/c);
					
					// second point on the side;
					x=meshnode[meshele[i].p[k]].x;
					y=meshnode[meshele[i].p[k]].y;
					x/=units[LengthUnits]; y/=units[LengthUnits];
					s=meshele[i].e[j];
					a=lineproplist[s].A0 + x*lineproplist[s].A1 +
					  y*lineproplist[s].A2;
					// just take``real'' component.
					a*=cos(lineproplist[s].phi*DEG); 
					if (x!=0) L.SetValue(meshele[i].p[k],a/c);
				}
				else{
					// first point on the side;
					x=meshnode[meshele[i].p[j]].x;
					y=meshnode[meshele[i].p[j]].y;
					r=sqrt(x*x+y*y);
					if((x==0)&&(y==0)) t=0;
					else t=atan2(y,x)/DEG;
					r/=units[LengthUnits];
					s=meshele[i].e[j];
					a=lineproplist[s].A0 + r*lineproplist[s].A1 +
					  t*lineproplist[s].A2;
					a*=cos(lineproplist[s].phi*DEG); // just take ``real'' component.
					if (x!=0) L.SetValue(meshele[i].p[j],a/c);
					
					// second point on the side;
					x=meshnode[meshele[i].p[k]].x;
					y=meshnode[meshele[i].p[k]].y;
					r=sqrt(x*x+y*y);
					if((x==0) && (y==0)) t=0;
					else t=atan2(y,x)/DEG;
					r/=units[LengthUnits];
					s=meshele[i].e[j];
					a=lineproplist[s].A0 + r*lineproplist[s].A1 +
					  t*lineproplist[s].A2;
					a*=cos(lineproplist[s].phi*DEG); // just take ``real'' component.
					if (x!=0) L.SetValue(meshele[i].p[k],a/c);
				}

			}
		}

		if ((SDIflag==TRUE) && (sdi_iter==1)) for(i=0;i<NumEls;i++)
		for(j=0;j<3;j++){
			k=j+1; if(k==3) k=0;
			if(meshele[i].e[j]>=0)
			if(lineproplist[ meshele[i].e[j] ].BdryFormat==3)
			{			
					L.SetValue(meshele[i].p[j],0.);
					L.SetValue(meshele[i].p[k],0.);
			}
		}

	// Apply any periodicity/antiperiodicity boundary conditions that we have
	for(k=0;k<NumPBCs;k++)
	{
		if (pbclist[k].t==0) L.Periodicity(pbclist[k].x,pbclist[k].y);
		if (pbclist[k].t==1) L.AntiPeriodicity(pbclist[k].x,pbclist[k].y);
	}

	// solve the problem;
	if (SDIflag==FALSE) for(j=0;j<NumNodes;j++) V_old[j]=L.V[j];
	else{
		if(sdi_iter==0)
			for(j=0;j<NumNodes;j++) V_sdi[j]=L.V[j];
		else
			for(j=0;j<NumNodes;j++){
				V_old[j]=V_sdi[j];
				V_sdi[j]=L.V[j];
			}
	}

	if (L.PCGSolve(Iter+sdi_iter)==FALSE) return FALSE;
	
	if(sdi_iter==1) 
		for(j=0;j<NumNodes;j++) L.V[j]=(V_sdi[j]+L.V[j])/2.;

  } // end of SDI iteration loop;
	if (LinearFlag==FALSE){

        for(j=0,x=0,y=0;j<NumNodes;j++){
            x+=(L.V[j]-V_old[j])*(L.V[j]-V_old[j]);
            y+=(L.V[j]*L.V[j]);
        }

        if (y==0) LinearFlag=TRUE;
        else{
            lastres=res;
            res=sqrt(x/y);
        }


        // relaxation if we need it
        if(Iter>5)
        {
            if ((res>lastres) && (Relax>0.125)) Relax/=2.;
            else Relax+= 0.1 * (1. - Relax);
       
            for(j=0;j<NumNodes;j++) L.V[j]=Relax*L.V[j]+(1.0-Relax)*V_old[j];
        }

       
        // report some results
		char outstr[256];
		sprintf(outstr,"Newton Iteration(%i) Relax=%.4g",Iter,Relax);
        TheView->SetDlgItemText(IDC_FRAME2,outstr);
        j=(int)  (100.*log10(res)/(log10(Precision)+2.));
        if (j>100) j=100;
        TheView->m_prog2.SetPos(j);
    }

	// nonlinear iteration has to have a looser tolerance
	// than the linear solver--otherwise, things can't ever
	// converge.  Arbitrarily choose 100*tolerance.
	if((res<100.*Precision) && Iter>0) LinearFlag=TRUE;

	Iter++;
	
} while(LinearFlag==FALSE);

	// convert answer back to Webers for plotting purposes.
	for (i=0;i<NumNodes;i++){
		L.b[i]=L.V[i]*c;
		L.b[i]*=(meshnode[i].x*0.01*2*PI);
	}

	free(V_old);
	if (SDIflag==TRUE) free(V_sdi);
	if(NumCircProps>0){
		free(CircInt1);
		free(CircInt2);
		free(CircInt3);
	}

	return TRUE;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -