📄 discontig.c
字号:
__per_cpu_start; cpu_data += PERCPU_PAGE_SIZE; } } } return 0;}/** * free_node_bootmem - free bootmem allocator memory for use * @start: physical start of range * @len: length of range * @node: node where this range resides * * Simply calls the bootmem allocator to free the specified ranged from * the given pg_data_t's bdata struct. After this function has been called * for all the entries in the EFI memory map, the bootmem allocator will * be ready to service allocation requests. */static int __init free_node_bootmem(unsigned long start, unsigned long len, int node){ free_bootmem_node(mem_data[node].pgdat, start, len); return 0;}/** * reserve_pernode_space - reserve memory for per-node space * * Reserve the space used by the bootmem maps & per-node space in the boot * allocator so that when we actually create the real mem maps we don't * use their memory. */static void __init reserve_pernode_space(void){ unsigned long base, size, pages; struct bootmem_data *bdp; int node; for_each_online_node(node) { pg_data_t *pdp = mem_data[node].pgdat; bdp = pdp->bdata; /* First the bootmem_map itself */ pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; base = __pa(bdp->node_bootmem_map); reserve_bootmem_node(pdp, base, size); /* Now the per-node space */ size = mem_data[node].pernode_size; base = __pa(mem_data[node].pernode_addr); reserve_bootmem_node(pdp, base, size); }}/** * initialize_pernode_data - fixup per-cpu & per-node pointers * * Each node's per-node area has a copy of the global pg_data_t list, so * we copy that to each node here, as well as setting the per-cpu pointer * to the local node data structure. The active_cpus field of the per-node * structure gets setup by the platform_cpu_init() function later. */static void __init initialize_pernode_data(void){ int cpu, node; pg_data_t *pgdat_list[MAX_NUMNODES]; for_each_online_node(node) pgdat_list[node] = mem_data[node].pgdat; /* Copy the pg_data_t list to each node and init the node field */ for_each_online_node(node) { memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, sizeof(pgdat_list)); } /* Set the node_data pointer for each per-cpu struct */ for (cpu = 0; cpu < NR_CPUS; cpu++) { node = node_cpuid[cpu].nid; per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; }}/** * find_memory - walk the EFI memory map and setup the bootmem allocator * * Called early in boot to setup the bootmem allocator, and to * allocate the per-cpu and per-node structures. */void __init find_memory(void){ int node; reserve_memory(); if (num_online_nodes() == 0) { printk(KERN_ERR "node info missing!\n"); node_set_online(0); } min_low_pfn = -1; max_low_pfn = 0; if (num_online_nodes() > 1) reassign_cpu_only_nodes(); /* These actually end up getting called by call_pernode_memory() */ efi_memmap_walk(filter_rsvd_memory, build_node_maps); efi_memmap_walk(filter_rsvd_memory, find_pernode_space); /* * Initialize the boot memory maps in reverse order since that's * what the bootmem allocator expects */ for (node = MAX_NUMNODES - 1; node >= 0; node--) { unsigned long pernode, pernodesize, map; struct bootmem_data *bdp; if (!node_online(node)) continue; bdp = &mem_data[node].bootmem_data; pernode = mem_data[node].pernode_addr; pernodesize = mem_data[node].pernode_size; map = pernode + pernodesize; /* Sanity check... */ if (!pernode) panic("pernode space for node %d " "could not be allocated!", node); init_bootmem_node(mem_data[node].pgdat, map>>PAGE_SHIFT, bdp->node_boot_start>>PAGE_SHIFT, bdp->node_low_pfn); } efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); reserve_pernode_space(); initialize_pernode_data(); max_pfn = max_low_pfn; find_initrd();}/** * per_cpu_init - setup per-cpu variables * * find_pernode_space() does most of this already, we just need to set * local_per_cpu_offset */void *per_cpu_init(void){ int cpu; if (smp_processor_id() == 0) { for (cpu = 0; cpu < NR_CPUS; cpu++) { per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; } } return __per_cpu_start + __per_cpu_offset[smp_processor_id()];}/** * show_mem - give short summary of memory stats * * Shows a simple page count of reserved and used pages in the system. * For discontig machines, it does this on a per-pgdat basis. */void show_mem(void){ int i, total_reserved = 0; int total_shared = 0, total_cached = 0; unsigned long total_present = 0; pg_data_t *pgdat; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { unsigned long present = pgdat->node_present_pages; int shared = 0, cached = 0, reserved = 0; printk("Node ID: %d\n", pgdat->node_id); for(i = 0; i < pgdat->node_spanned_pages; i++) { if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) continue; if (PageReserved(pgdat->node_mem_map+i)) reserved++; else if (PageSwapCache(pgdat->node_mem_map+i)) cached++; else if (page_count(pgdat->node_mem_map+i)) shared += page_count(pgdat->node_mem_map+i)-1; } total_present += present; total_reserved += reserved; total_cached += cached; total_shared += shared; printk("\t%ld pages of RAM\n", present); printk("\t%d reserved pages\n", reserved); printk("\t%d pages shared\n", shared); printk("\t%d pages swap cached\n", cached); } printk("%ld pages of RAM\n", total_present); printk("%d reserved pages\n", total_reserved); printk("%d pages shared\n", total_shared); printk("%d pages swap cached\n", total_cached); printk("Total of %ld pages in page table cache\n", pgtable_cache_size); printk("%d free buffer pages\n", nr_free_buffer_pages());}/** * call_pernode_memory - use SRAT to call callback functions with node info * @start: physical start of range * @len: length of range * @arg: function to call for each range * * efi_memmap_walk() knows nothing about layout of memory across nodes. Find * out to which node a block of memory belongs. Ignore memory that we cannot * identify, and split blocks that run across multiple nodes. * * Take this opportunity to round the start address up and the end address * down to page boundaries. */void call_pernode_memory(unsigned long start, unsigned long len, void *arg){ unsigned long rs, re, end = start + len; void (*func)(unsigned long, unsigned long, int); int i; start = PAGE_ALIGN(start); end &= PAGE_MASK; if (start >= end) return; func = arg; if (!num_node_memblks) { /* No SRAT table, so assume one node (node 0) */ if (start < end) (*func)(start, end - start, 0); return; } for (i = 0; i < num_node_memblks; i++) { rs = max(start, node_memblk[i].start_paddr); re = min(end, node_memblk[i].start_paddr + node_memblk[i].size); if (rs < re) (*func)(rs, re - rs, node_memblk[i].nid); if (re == end) break; }}/** * count_node_pages - callback to build per-node memory info structures * @start: physical start of range * @len: length of range * @node: node where this range resides * * Each node has it's own number of physical pages, DMAable pages, start, and * end page frame number. This routine will be called by call_pernode_memory() * for each piece of usable memory and will setup these values for each node. * Very similar to build_maps(). */static __init int count_node_pages(unsigned long start, unsigned long len, int node){ unsigned long end = start + len; mem_data[node].num_physpages += len >> PAGE_SHIFT; if (start <= __pa(MAX_DMA_ADDRESS)) mem_data[node].num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; start = GRANULEROUNDDOWN(start); start = ORDERROUNDDOWN(start); end = GRANULEROUNDUP(end); mem_data[node].max_pfn = max(mem_data[node].max_pfn, end >> PAGE_SHIFT); mem_data[node].min_pfn = min(mem_data[node].min_pfn, start >> PAGE_SHIFT); return 0;}/** * paging_init - setup page tables * * paging_init() sets up the page tables for each node of the system and frees * the bootmem allocator memory for general use. */void __init paging_init(void){ unsigned long max_dma; unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long pfn_offset = 0; int node; max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; /* so min() will work in count_node_pages */ for_each_online_node(node) mem_data[node].min_pfn = ~0UL; efi_memmap_walk(filter_rsvd_memory, count_node_pages); for_each_online_node(node) { memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); num_physpages += mem_data[node].num_physpages; if (mem_data[node].min_pfn >= max_dma) { /* All of this node's memory is above ZONE_DMA */ zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - mem_data[node].min_pfn; zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - mem_data[node].min_pfn - mem_data[node].num_physpages; } else if (mem_data[node].max_pfn < max_dma) { /* All of this node's memory is in ZONE_DMA */ zones_size[ZONE_DMA] = mem_data[node].max_pfn - mem_data[node].min_pfn; zholes_size[ZONE_DMA] = mem_data[node].max_pfn - mem_data[node].min_pfn - mem_data[node].num_dma_physpages; } else { /* This node has memory in both zones */ zones_size[ZONE_DMA] = max_dma - mem_data[node].min_pfn; zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - mem_data[node].num_dma_physpages; zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - max_dma; zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (mem_data[node].num_physpages - mem_data[node].num_dma_physpages); } if (node == 0) { vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page)); vmem_map = (struct page *) vmalloc_end; efi_memmap_walk(create_mem_map_page_table, NULL); printk("Virtual mem_map starts at 0x%p\n", vmem_map); } pfn_offset = mem_data[node].min_pfn; NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; free_area_init_node(node, NODE_DATA(node), zones_size, pfn_offset, zholes_size); } zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -