📄 log_marg_prob_node.m
字号:
function L = log_marg_prob_node(CPD, self_ev, pev)% LOG_MARG_PROB_NODE Compute prod_m log P(x(i,m)| x(pi_i,m)) for node i (linear_gaussian)% L = log_marg_prob_node(CPD, self_ev, pev)%% This differs from log_prob_node because we integrate out the parameters.% self_ev{m} is the evidence on this node in case m.% pev{i,m} is the evidence on the i'th parent in case m % We assume there is <= 1 case.ncases = length(self_ev);if ncases==0 L = 0; return;elseif ncases==1 y = self_ev{1}; x = cat(1, pev{:}); % column vector f = 1-x'*inv(x*x' + CPD.prior.n)*x; alpha = CPD.prior.alpha; L = log_student_pdf(y, x'*CPD.prior.theta, f*alpha/CPD.prior.beta, 2*alpha);else error('can''t handle batch data');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -