📄 maximize_params.m
字号:
function CPD = maximize_params(CPD, temp)% MAXIMIZE_PARAMS Set the params of a tabular node to their ML/MAP values.% CPD = maximize_params(CPD, temp)if ~adjustable_CPD(CPD), return; end%assert(approxeq(sum(CPD.counts(:)), CPD.nsamples)); % false!switch CPD.prior_type case 'none', counts = reshape(CPD.counts, size(CPD.CPT)); CPD.CPT = mk_stochastic(counts); case 'dirichlet', counts = reshape(CPD.counts, size(CPD.CPT)); CPD.CPT = mk_stochastic(counts + CPD.dirichlet); case 'entropic', % For an HMM, % CPT(i,j) = pr(X(t)=j | X(t-1)=i) = transprob(i,j) % counts(i,j) = E #(X(t-1)=i, X(t)=j) = exp_num_trans(i,j) Z = 1-temp; fam_sz = CPD.sizes; psz = prod(fam_sz(1:end-1)); ssz = fam_sz(end); counts = reshape(CPD.counts, psz, ssz); CPT = zeros(psz, ssz); for i=CPD.entropic_pcases(:)' [CPT(i,:), logpost] = entropic_map_estimate(counts(i,:), Z); end non_entropic_pcases = mysetdiff(1:psz, CPD.entropic_pcases); for i=non_entropic_pcases(:)' CPT(i,:) = mk_stochastic(counts(i,:)); end %for i=1:psz % [CPT(i,:), logpost] = entropic_map(counts(i,:), Z); %end if CPD.trim & (temp < 2) % at high temps, we would trim everything! % grad(j) = d log lik / d theta(i ->j) % CPT(i,j) = 0 => counts(i,j) = 0 % so we can safely replace 0s by 1s in the denominator denom = CPT(i,:) + (CPT(i,:)==0); grad = counts(i,:) ./ denom; trim = find(CPT(i,:) <= exp(-(1/Z)*grad)); % eqn 32 if ~isempty(trim) CPT(i,trim) = 0; if all(CPD.trimmed_trans(i,trim)==0) % trimming for 1st time disp(['trimming CPT(' num2str(i) ',' num2str(trim) ')']) end CPD.trimmed_trans(i,trim) = 1; end end CPD.CPT = myreshape(CPT, CPD.sizes);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -