📄 bch_euc.c
字号:
// ------------------------------------------------------------------------
// File: bch_euc.c
// Date: April 3, 2002
// Description: An encoder/decoder for binary BCH codes
// Error correction using the EUCLIDEAN ALGORITHM
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicit
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <math.h>
#include <stdio.h>
int m, n, length, k, t, d;
int p[21];
int alpha_to[1048576], index_of[1048576], g[548576];
int recd[1048576], data[1048576], bb[548576];
int seed;
int numerr, errpos[1024], decerror = 0;
void
read_p()
/*
* Read m, the degree of a primitive polynomial p(x) used to compute the
* Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read
* the code length.
*/
{
int i, ninf;
printf("\nEnter a value of m such that the code length is\n");
printf("2**(m-1) - 1 < length <= 2**m - 1\n\n");
do {
printf("Enter m (between 2 and 20): ");
scanf("%d", &m);
} while ( !(m>1) || !(m<21) );
for (i=1; i<m; i++)
p[i] = 0;
p[0] = p[m] = 1;
if (m == 2) p[1] = 1;
else if (m == 3) p[1] = 1;
else if (m == 4) p[1] = 1;
else if (m == 5) p[2] = 1;
else if (m == 6) p[1] = 1;
else if (m == 7) p[1] = 1;
else if (m == 8) p[4] = p[5] = p[6] = 1;
else if (m == 9) p[4] = 1;
else if (m == 10) p[3] = 1;
else if (m == 11) p[2] = 1;
else if (m == 12) p[3] = p[4] = p[7] = 1;
else if (m == 13) p[1] = p[3] = p[4] = 1;
else if (m == 14) p[1] = p[11] = p[12] = 1;
else if (m == 15) p[1] = 1;
else if (m == 16) p[2] = p[3] = p[5] = 1;
else if (m == 17) p[3] = 1;
else if (m == 18) p[7] = 1;
else if (m == 19) p[1] = p[5] = p[6] = 1;
else if (m == 20) p[3] = 1;
printf("p(x) = ");
n = 1;
for (i = 0; i <= m; i++) {
n *= 2;
printf("%1d", p[i]);
}
printf("\n");
n = n / 2 - 1;
ninf = (n + 1) / 2 - 1;
do {
printf("Enter code length (%d < length <= %d): ", ninf, n);
scanf("%d", &length);
} while ( !((length <= n)&&(length>ninf)) );
}
void
generate_gf()
/*
* Generate field GF(2**m) from the irreducible polynomial p(X) with
* coefficients in p[0]..p[m].
*
* Lookup tables:
* index->polynomial form: alpha_to[] contains j=alpha^i;
* polynomial form -> index form: index_of[j=alpha^i] = i
*
* alpha=2 is the primitive element of GF(2**m)
*/
{
register int i, mask;
mask = 1;
alpha_to[m] = 0;
for (i = 0; i < m; i++) {
alpha_to[i] = mask;
index_of[alpha_to[i]] = i;
if (p[i] != 0)
alpha_to[m] ^= mask;
mask <<= 1;
}
index_of[alpha_to[m]] = m;
mask >>= 1;
for (i = m + 1; i < n; i++) {
if (alpha_to[i - 1] >= mask)
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
else
alpha_to[i] = alpha_to[i - 1] << 1;
index_of[alpha_to[i]] = i;
}
index_of[0] = -1;
}
void
gen_poly()
/*
* Compute the generator polynomial of a binary BCH code. Fist generate the
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
* determine those cycle sets that contain integers in the set of (d-1)
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
* as the product of linear factors of the form (x+alpha^i), for every i in
* the above cycle sets.
*/
{
register int ii, jj, ll, kaux;
register int test, aux, nocycles, root, noterms, rdncy;
int cycle[1024][21], size[1024], min[1024], zeros[1024];
/* Generate cycle sets modulo n, n = 2**m - 1 */
cycle[0][0] = 0;
size[0] = 1;
cycle[1][0] = 1;
size[1] = 1;
jj = 1; /* cycle set index */
if (m > 9) {
printf("Computing cycle sets modulo %d\n", n);
printf("(This may take some time)...\n");
}
do {
/* Generate the jj-th cycle set */
ii = 0;
do {
ii++;
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;
size[jj]++;
aux = (cycle[jj][ii] * 2) % n;
} while (aux != cycle[jj][0]);
/* Next cycle set representative */
ll = 0;
do {
ll++;
test = 0;
for (ii = 1; ((ii <= jj) && (!test)); ii++)
/* Examine previous cycle sets */
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
if (ll == cycle[ii][kaux])
test = 1;
} while ((test) && (ll < (n - 1)));
if (!(test)) {
jj++; /* next cycle set index */
cycle[jj][0] = ll;
size[jj] = 1;
}
} while (ll < (n - 1));
nocycles = jj; /* number of cycle sets modulo n */
printf("Enter the error correcting capability, t: ");
scanf("%d", &t);
d = 2 * t + 1;
/* Search for roots 1, 2, ..., d-1 in cycle sets */
kaux = 0;
rdncy = 0;
for (ii = 1; ii <= nocycles; ii++) {
min[kaux] = 0;
test = 0;
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
for (root = 1; ((root < d) && (!test)); root++)
if (root == cycle[ii][jj]) {
test = 1;
min[kaux] = ii;
}
if (min[kaux]) {
rdncy += size[min[kaux]];
kaux++;
}
}
noterms = kaux;
kaux = 1;
for (ii = 0; ii < noterms; ii++)
for (jj = 0; jj < size[min[ii]]; jj++) {
zeros[kaux] = cycle[min[ii]][jj];
kaux++;
}
k = length - rdncy;
if (k<0)
{
printf("Parameters invalid!\n");
exit(0);
}
printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d);
/* Compute the generator polynomial */
g[0] = alpha_to[zeros[1]];
g[1] = 1; /* g(x) = (X + zeros[1]) initially */
for (ii = 2; ii <= rdncy; ii++) {
g[ii] = 1;
for (jj = ii - 1; jj > 0; jj--)
if (g[jj] != 0)
g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];
else
g[jj] = g[jj - 1];
g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];
}
printf("Generator polynomial:\ng(x) = ");
for (ii = 0; ii <= rdncy; ii++) {
printf("%d", g[ii]);
if (ii && ((ii % 50) == 0))
printf("\n");
}
printf("\n");
}
void
encode_bch()
/*
* Compute redundacy bb[], the coefficients of b(x). The redundancy
* polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
* by the generator polynomial g(x).
*/
{
register int i, j;
register int feedback;
for (i = 0; i < length - k; i++)
bb[i] = 0;
for (i = k - 1; i >= 0; i--) {
feedback = data[i] ^ bb[length - k - 1];
if (feedback != 0) {
for (j = length - k - 1; j > 0; j--)
if (g[j] != 0)
bb[j] = bb[j - 1] ^ feedback;
else
bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;
} else {
for (j = length - k - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
}
void
decode_bch()
{
register int i, j, u, q, t2, count = 0, syn_error = 0;
int elp[1026][1024], l[1], s[1025];
int root[200], loc[200], err[1024], reg[201];
int qt[513], r[129][513];
int b[12][513];
int degr[129], degb[129];
int temp, aux[513];
t2 = 2 * t;
/* Compute the syndromes */
printf("S(x) = ");
for (i = 1; i <= t2; i++) {
s[i] = 0;
for (j = 0; j < length; j++)
if (recd[j] != 0)
s[i] ^= alpha_to[(i * j) % n];
if (s[i] != 0)
syn_error = 1; /* set error flag if non-zero syndrome */
/* convert syndrome from polynomial form to index form */
s[i] = index_of[s[i]];
printf("%3d ", s[i]);
}
printf("\n");
if (syn_error)
{
//
// Compute the error location polynomial with the Euclidean algorithm
//
for (i=0; i<=d; i++) {
r[0][i] = 0;
r[1][i] = 0;
b[0][i] = 0;
b[1][i] = 0;
qt[i] = 0;
}
b[1][0] = 1; degb[0] = 0; degb[1] = 0;
r[0][d] = 1; // x^{2t+1}
degr[0] = d;
for (i=0; i<=t2; i++)
{
if (s[i]!=-1) {
r[1][i] = alpha_to[s[i]];
degr[1] = i;
}
else
r[1][i] = 0;
}
j = 1;
if( (degr[0]-degr[1]) < t ) {
do {
j++;
printf("\n************************ j=%3d\n", j);
// ----------------------------------------
// Apply long division to r[j-2] and r[j-1]
// ----------------------------------------
// Clean r[j]
for (i=0; i<=d; i++) r[j][i] = 0;
for (i=0;i<=degr[j-2];i++)
r[j][i] = r[j-2][i];
degr[j] = degr[j-2];
temp = degr[j-2]-degr[j-1];
for (i=temp; i>=0; i--) {
u = degr[j-1]+i;
if (degr[j] == u)
{
if ( r[j][degr[j]] && r[j-1][degr[j-1]] )
qt[i] = alpha_to[(index_of[r[j][degr[j]]]
+n-index_of[r[j-1][degr[j-1]]])%n];
//printf("r[j][degr[j]]] = %d, r[j-1][degr[j-1]] = %d\n",
//index_of[r[j][degr[j]]], index_of[r[j-1][degr[j-1]]]);
printf("\nqt[%d]=%d\n", i, index_of[qt[i]]);
for (u=0; u<=d; u++) aux[u] = 0;
temp = degr[j-1];
for (u=0; u<=temp; u++)
if ( qt[i] && r[j-1][u] )
aux[u+i] = alpha_to[(index_of[qt[i]]+index_of[r[j-1][u]])%n];
else
aux[u+i] = 0;
printf("r = ");
for (u=0; u<=degr[j]; u++) printf("%4d ", index_of[r[j][u]]);
printf("\n");
printf("aux = ");
for (u=0; u<=degr[j-1]+i; u++) printf("%4d ", index_of[aux[u]]);
printf("\n");
for (u=0; u<=degr[j]; u++)
r[j][u] ^= aux[u];
u = d;
while ( !r[j][u] && (u>0)) u--;
degr[j] = u;
}
else
qt[i] = 0;
printf("r = ");
for (u=0; u<=degr[j]; u++) printf("%4d ", index_of[r[j][u]]);
printf("\n");
}
printf("\nqt = ",j);
temp = degr[j-2]-degr[j-1];
for (i=0; i<=temp; i++) printf("%4d ", index_of[qt[i]]);
printf("\nr = ");
for (i=0; i<=degr[j]; i++) printf("%4d ", index_of[r[j][i]]);
printf("\nb = ");
// Compute b(x)
for (i=0; i<=d; i++)
aux[i] = 0;
temp = degr[j-2]-degr[j-1];
for (i=0; i<=temp; i++)
for (u=0; u<=degb[j-1]; u++)
if ( qt[i] && b[j-1][u] )
aux[i+u] ^= alpha_to[(index_of[qt[i]]+index_of[b[j-1][u]])%n];
for (i=0; i<=d; i++)
b[j][i] = b[j-2][i] ^ aux[i];
u = d;
while ( !b[j][u] && (u>0) ) u--;
degb[j] = u;
for (i=0; i<=degb[j]; i++) printf("%4d ", index_of[b[j][i]]);
printf("\n");
} while (degr[j]>t);
}
u=1;
temp = degb[j];
// Normalize error locator polynomial
for (i=0;i<=temp;i++) {
elp[u][i] = alpha_to[(index_of[b[j][i]]-index_of[b[j][0]]+n)%n];
}
l[u] = temp;
if (l[u] <= t) {
/* put elp into index form */
for (i = 0; i <= l[u]; i++)
elp[u][i] = index_of[elp[u][i]];
printf("sigma(x) = ");
for (i = 0; i <= l[u]; i++)
printf("%3d ", elp[u][i]);
printf("\n");
printf("Roots: ");
/* Chien search: find roots of the error location polynomial */
for (i = 1; i <= l[u]; i++)
reg[i] = elp[u][i];
count = 0;
for (i = 1; i <= n; i++) {
q = 1;
for (j = 1; j <= l[u]; j++)
if (reg[j] != -1) {
reg[j] = (reg[j] + j) % n;
q ^= alpha_to[reg[j]];
}
if (!q) {
root[count] = i;
loc[count] = n - i;
count++;
printf("%3d ", n - i);
}
}
printf("\n");
if (count == l[u])
/* no. roots = degree of elp hence <= t errors */
for (i = 0; i < l[u]; i++)
recd[loc[i]] ^= 1;
else
printf("Incomplete decoding: errors detected\n");
}
}
}
main()
{
int i;
read_p(); /* Read m */
generate_gf(); /* Construct the Galois Field GF(2**m) */
gen_poly(); /* Compute the generator polynomial of BCH code */
/* Randomly generate DATA */
seed = 131073;
srandom(seed);
for (i = 0; i < k; i++)
data[i] = ( random() & 65536 ) >> 16;
encode_bch(); /* encode data */
/*
* recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x)
*/
for (i = 0; i < length - k; i++)
recd[i] = bb[i];
for (i = 0; i < k; i++)
recd[i + length - k] = data[i];
printf("Code polynomial:\nc(x) = ");
for (i = 0; i < length; i++) {
printf("%1d", recd[i]);
if (i && ((i % 50) == 0))
printf("\n");
}
printf("\n");
printf("Enter the number of errors:\n");
scanf("%d", &numerr); /* CHANNEL errors */
printf("Enter error locations (integers between");
printf(" 0 and %d): ", length-1);
/*
* recd[] are the coefficients of r(x) = c(x) + e(x)
*/
for (i = 0; i < numerr; i++)
scanf("%d", &errpos[i]);
if (numerr)
for (i = 0; i < numerr; i++)
recd[errpos[i]] ^= 1;
printf("r(x) = ");
for (i = 0; i < length; i++) {
printf("%1d", recd[i]);
if (i && ((i % 50) == 0))
printf("\n");
}
printf("\n");
decode_bch(); /* DECODE received codeword recv[] */
/*
* print out original and decoded data
*/
printf("Results:\n");
printf("original data = ");
for (i = 0; i < k; i++) {
printf("%1d", data[i]);
if (i && ((i % 50) == 0))
printf("\n");
}
printf("\nrecovered data = ");
for (i = length - k; i < length; i++) {
printf("%1d", recd[i]);
if ((i-length+k) && (((i-length+k) % 50) == 0))
printf("\n");
}
printf("\n");
/*
* DECODING ERRORS? we compare only the data portion
*/
for (i = length - k; i < length; i++)
if (data[i - length + k] != recd[i])
decerror++;
if (decerror)
printf("There were %d decoding errors in message positions\n", decerror);
else
printf("Succesful decoding\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -